Answer:
G > 2
Step-by-step explanation:
9514 1404 393
Answer:
26 minutes
Step-by-step explanation:
Let x represent the number of minutes used. The charges will be equal when ...
18.75 +0.18x = 12.51 +0.42x
6.24 = 0.24x . . . . . . . . . . . . . . . subtract 0.18x+12.51
26 = x . . . . . . . . . . . . . . . divide by 0.24
A customer using 26 minutes will receive the same bill from either company.
Answer:
2(y-10) less/= -28
Step-by-step explanation:
2(y-10) less/= -28
Answer:
69.08
Step-by-step explanation:
Replace
:
![\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \int_0^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%20%5Csqrt%5B3%5D%7B%5Ctan%28x%29%7D%20%5Cln%28%5Ctan%28x%29%29%20%5C%2C%20dx%20%3D%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%20%5Cln%28x%29%7D%7B1%2Bx%5E2%7D%20%5C%2C%20dx)
Split the integral at x = 1, and consider the latter one over [1, ∞) in which we replace
:
![\displaystyle \int_1^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx = \int_0^1 \frac{\ln\left(\frac1x\right)}{\sqrt[3]{x} \left(1+\frac1{x^2}\right)} \frac{dx}{x^2} = - \int_0^1 \frac{\ln(x)}{\sqrt[3]{x} (1+x^2)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_1%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%20%5Cln%28x%29%7D%7B1%2Bx%5E2%7D%20%5C%2C%20dx%20%3D%20%5Cint_0%5E1%20%5Cfrac%7B%5Cln%5Cleft%28%5Cfrac1x%5Cright%29%7D%7B%5Csqrt%5B3%5D%7Bx%7D%20%5Cleft%281%2B%5Cfrac1%7Bx%5E2%7D%5Cright%29%7D%20%5Cfrac%7Bdx%7D%7Bx%5E2%7D%20%3D%20-%20%5Cint_0%5E1%20%5Cfrac%7B%5Cln%28x%29%7D%7B%5Csqrt%5B3%5D%7Bx%7D%20%281%2Bx%5E2%29%7D%20%5C%2C%20dx)
Then the original integral is equivalent to
![\displaystyle \int_0^1 \frac{\ln(x)}{1+x^2} \left(\sqrt[3]{x} - \frac1{\sqrt[3]{x}}\right) \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cfrac%7B%5Cln%28x%29%7D%7B1%2Bx%5E2%7D%20%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%20-%20%5Cfrac1%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cright%29%20%5C%2C%20dx)
Recall that for |x| < 1,

so that we can expand the integrand, then interchange the sum and integral to get

Integrate by parts, with



Recall the Fourier series we used in an earlier question [27217075]; if
where 0 ≤ x ≤ 1 is a periodic function, then



Evaluate f and its Fourier expansion at x = 1/2 :



So, we conclude that
![\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \frac94 \times \frac{2\pi^2}{27} = \boxed{\frac{\pi^2}6}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%20%5Csqrt%5B3%5D%7B%5Ctan%28x%29%7D%20%5Cln%28%5Ctan%28x%29%29%20%5C%2C%20dx%20%3D%20%5Cfrac94%20%5Ctimes%20%5Cfrac%7B2%5Cpi%5E2%7D%7B27%7D%20%3D%20%5Cboxed%7B%5Cfrac%7B%5Cpi%5E2%7D6%7D)