Answer:
68.302
Step-by-step explanation:
68302/1000=68.302
hope this helps :)
Answer:
the woman has to live 1 mile from work to minimize the expenses
Step-by-step explanation:
Given the data in the question;
the distance within 9 miles ⇒ 0 < x > 9
Total costs Q = cx + 4c/( x + 1)
costs should be minimum ⇒ dQ/dx = 0
⇒ d/dx [ cx + 4c/( x + 1) ] = 0
⇒ ( x + 1)² = 4
take square root of both side
√[ ( x + 1)² ] = √4
x + 1 = 2
x = 2 - 1
x = 1
Therefore, the woman has to live 1 mile from work to minimize the expenses
An algebraic expression is a phrase in mathematics that consists of numbers such as 1,2,3 and the like, variables which are represented with letters and operations like addition, multiplication, subtraction and division. It is usually used to represent a certain situation which would relate the variables involved. To write the algebraic expression for the problem statement above, we do as follows:
Let x = number of consoles to be bought
y = number of games to be bought
z = number of controllers to bebought
C = total cost of all
The total cost would be equal to the sum of the price multiplied by the number of consoles, games and controllers bought. We write the algebraic expression as follows,
C = 299x + 59.99y + 29.99z
Answer: 16
Step-by-step explanation:
Let the number of candy Ed took be denoted as "x"
Since Joe ate twice the amount of candy Ed ate, then the number of candies joe ate will be denoted as "2x"
Since all together they ate a total of 48 candies, then the sum of the candies eaten by Joe and Ed is what gives a total of 48
This means:
2x + x = 48
3x = 48
X = 16.
Using the <em>system of equation</em> created, Emily will catch up Lucy after 30 seconds
Given the Parameters :
- Lucy's distance = 2t
- Emily's distance = 5t
<u>We can set up an equation to represent the required scenario thus</u> :
Emily's distance = Lucy's distance + 90
5t = 2t + 90
We solve for t
<em>Collect like terms</em> :
5t - 2t = 90
3t = 90
Divide both sides by 3 to isolate t
t = 90/3
t = 30
Therefore, Emily will catch up with Lucy after 30 seconds
Learn more :brainly.com/question/13218948