1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
6

If alpha and beta are the angles in the first quadrant tan alpha = 1/7 and sin beta =1/ root 10 then usind the formula sin (A +B

) = sin A. CosB + sina. CosB find the value of alpha + 2beta​
Mathematics
2 answers:
zysi [14]3 years ago
7 0

Answer:

$\arcsin\left(\frac{129\sqrt{2}}{250}\right)\approx 0.8179$

Step-by-step explanation:

\alpha \text{ and } \beta \text{ in Quadrant I}

$\tan(\alpha)=\frac{1}{7} \text{ and } \sin(\beta)=\frac{1}{\sqrt{10}}=\frac{\sqrt{10} }{10} $

<u>Using Pythagorean Identities</u>:

\boxed{\sin^2(\theta)+\cos^2(\theta)=1}    \text{ and } \boxed{1+\tan^2(\theta)=\sec^2(\theta)}

$\left(\frac{\sqrt{10} }{10} \right)^2+\cos^2(\beta)=1 \Longrightarrow \cos(\beta)=\sqrt{1-\frac{10}{100}}  =\sqrt{\frac{90}{100}}=\frac{3\sqrt{10}}{10}$

\text{Note: } \cos(\beta) \text{ is positive because the angle is in the first qudrant}

$1+\left(\frac{1 }{7} \right)^2=\frac{1}{\cos^2(\alpha)}  \Longrightarrow 1+\frac{1}{49}=\frac{1}{\cos^2(\alpha)}  \Longrightarrow \frac{50}{49} =\frac{1}{\cos^2(\alpha)} $

$\Longrightarrow \frac{49}{50}=\cos^2(\alpha) \Longrightarrow  \cos(\alpha)=\sqrt{\frac{49}{50} } =\frac{7\sqrt{2}}{10}$

\text{Now let's find }\sin(\alpha)

$\sin^2(\alpha)+\left(\frac{7\sqrt{2} }{10}\right)^2=1 \Longrightarrow \sin^2(\alpha) +\frac{49}{50}=1 \Longrightarrow \sin(\alpha)=\sqrt{1-\frac{49}{50}} = \frac{\sqrt{2}}{10}$

<u>The sum Identity is</u>:

\sin(\alpha + \beta)=\sin(\alpha)\cos(\beta)+\sin(\beta)\cos(\alpha)

I will just follow what the question asks.

\text{Find the value of }\alpha+2\beta

\sin(\alpha + 2\beta)=\sin(\alpha)\cos(2\beta)+\sin(2\beta)\cos(\alpha)

\text{I will first calculate }\cos(2\beta)

$\cos(2\beta)=\frac{1-\tan^2(\beta)}{1+\tan^2(\beta)} =\frac{1-(\frac{1}{7})^2 }{1+(\frac{1}{7})^2}=\frac{24}{25}$

\text{Now }\sin(2\beta)

$\sin(2\beta)=2\sin(\beta)\cos(\beta)=2 \cdot \frac{\sqrt{10} }{10}\cdot \frac{3\sqrt{10} }{10} = \frac{3}{5} $

Now we can perform the sum identity:

\sin(\alpha + 2\beta)=\sin(\alpha)\cos(2\beta)+\sin(2\beta)\cos(\alpha)

$\sin(\alpha + 2\beta)=\frac{\sqrt{2}}{10}\cdot  \frac{24}{25} +\frac{3}{5} \cdot \frac{7\sqrt{2} }{10} = \frac{129\sqrt{2}}{250}$

But we are not done yet! You want

\alpha + 2\beta and not \sin(\alpha + 2\beta)

You actually want the

$\arcsin\left(\frac{129\sqrt{2}}{250}\right)\approx 0.8179$

aleksandr82 [10.1K]3 years ago
5 0

Answer:

ok bye guy................

You might be interested in
GIVING CROWN IS RIGHT!!!!!!
nasty-shy [4]
All you have to do is multiply the l * w = Area

When you look at 26 ft and 15 ft, 21 ft and 10 ft, 29 ft and 18 ft, you'd know it wouldn't work since it's over 180.

So the dimensions of the ceiling are l = 20 ft; w = 9 ft 


6 0
3 years ago
Unit 4 Ratio, Proportions, &amp; Percent
Sonja [21]

Answer:

???

Step-by-step explanation:

6 0
2 years ago
Solve S = 2πrh for r
Elodia [21]
Divide both sides by 2<span>πh:-

r = S / 2</span><span>πh  Answer</span>
6 0
3 years ago
Answer if you want to
prohojiy [21]

Answer:

B: 24(0.3)

Step-by-step explanation:

24 * 0.3 = 7.2

So Mandy spent $7.20 on arts and crafts.

24 - 7.2 = $16.80 remaining.

So this is the final answer is 24 * 0.3

5 0
3 years ago
7
MrRissso [65]

Answer:

B

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • 48 feet = how many yards
    14·1 answer
  • A book sold 39,400 copies in its first month of release. suppose this represents 8.9% of the number of copies sold to date. how
    14·1 answer
  • A publisher sells 10^6 copies of a new book. Each book has 10^2 pages. How many pages total are there in all of the books sold?
    8·1 answer
  • Find BC
    12·2 answers
  • Solve the equation q(t)= 4t^2 +5 / t^2 ; t= -x
    10·1 answer
  • One lap around the lake is 710 mile.
    7·1 answer
  • Does anyone know the answer?
    9·2 answers
  • Answer this please thanks
    7·2 answers
  • Ok i’m stuck on this one
    8·2 answers
  • PLEASE HELP!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!