Answer:
and 
Step-by-step explanation:
Given
See attachment for complete question
Required
Determine the equilibrium solutions
We have:


To solve this, we first equate
and
to 0.
So, we have:


Factor out R in 

Split
or 
or 
Factor out W in 

Split
or 
Solve for R


Make R the subject


When
, we have:




Collect like terms

Solve for W




When
, we have:



Collect like terms

Solve for R


So, we have:

When
, we have:





So, we have:

Hence, the points of equilibrium are:
and 
Answer:
n/6
Step-by-step explanation:
If angle bisector of angle DBC is BE. What is m angle EBC, then <DBE = <EBC
Since <ABC = <ABD+<DBC
n = 2<DBC+<DBC
n = 3<DBC
<DBC = n/3
Since <DBC = 2EBC
n/3 = 2<EBC
n/6 = <EBC
Hence <EBC = n/6
Answer: ![\frac{\sqrt[4]{10xy^3}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B2y%7D)
where y is positive.
The 2y in the denominator is not inside the fourth root
==================================================
Work Shown:
![\sqrt[4]{\frac{5x}{8y}}\\\\\\\sqrt[4]{\frac{5x*2y^3}{8y*2y^3}}\ \ \text{.... multiply top and bottom by } 2y^3\\\\\\\sqrt[4]{\frac{10xy^3}{16y^4}}\\\\\\\frac{\sqrt[4]{10xy^3}}{\sqrt[4]{16y^4}} \ \ \text{ ... break up the fourth root}\\\\\\\frac{\sqrt[4]{10xy^3}}{\sqrt[4]{(2y)^4}} \ \ \text{ ... rewrite } 16y^4 \text{ as } (2y)^4\\\\\\\frac{\sqrt[4]{10xy^3}}{2y} \ \ \text{... where y is positive}\\\\\\](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B5x%7D%7B8y%7D%7D%5C%5C%5C%5C%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B5x%2A2y%5E3%7D%7B8y%2A2y%5E3%7D%7D%5C%20%5C%20%5Ctext%7B....%20multiply%20top%20and%20bottom%20by%20%7D%202y%5E3%5C%5C%5C%5C%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B10xy%5E3%7D%7B16y%5E4%7D%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B16y%5E4%7D%7D%20%5C%20%5C%20%5Ctext%7B%20...%20break%20up%20the%20fourth%20root%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B%282y%29%5E4%7D%7D%20%5C%20%5C%20%5Ctext%7B%20...%20rewrite%20%7D%2016y%5E4%20%5Ctext%7B%20as%20%7D%20%282y%29%5E4%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B2y%7D%20%5C%20%5C%20%5Ctext%7B...%20where%20y%20is%20positive%7D%5C%5C%5C%5C%5C%5C)
The idea is to get something of the form
in the denominator. In this case, 
To be able to reach the
, your teacher gave the hint to multiply top and bottom by
For more examples, search out "rationalizing the denominator".
Keep in mind that
only works if y isn't negative.
If y could be negative, then we'd have to say
. The absolute value bars ensure the result is never negative.
Furthermore, to avoid dividing by zero, we can't have y = 0. So all of this works as long as y > 0.
Answer:
5y+a-b
Step-by-step explanation:
Answer:
(-7, 4) and 7
Step-by-step explanation:
The standard equation of a circle is expressed as (x - a)^2 + (y - b )^2 = r^2
Where the center is the point (a, b) and the radius is r
Note: simply inserting the variables and playing around with your signs gives you the value for (a and b)
The square root of the radius gives you the value for r