Answer:
The molecular weight of the unknown compound is 267.7 g/mol
Explanation:
Lowering vapor pressure → Colligative property where the vapor pressure of solution is lower than vapor pressure of pure solvent
ΔP = P° . Xm
0.526 atm - 0.501 atm = 0.025atm
0.025 atm = 0.526 atm . Xm
Xm = 0.025 atm / 0.526 atm → 0.0475 (mole fraction)
Mole fraction = Moles of solute / Total moles (solute + solvent)
0.0475 = Moles of solute / Moles of solute + Moles of solvent
We determine the moles of solvent → 116.2 g . 1mol / 58 g = 2 moles
0.0475 = Moles of solute / Moles of solute + 2
0.0475 moles of solute + 0.095 = Moles of solute
0.095 = Moles of solute - 0.0475 moles of solute
0.095 / 0.9525 = Moles of solute → 0.0997 moles
Molas mass = g/mol → 26.7 g / 0.0997 mol = 267.7 g/mol
Answer:
(a) Barium is produced at the negative electrode
(b) Iodine is produced at the positive electrode
Explanation:
When an electric current is passed through a solution containing electrolyte, a non spontaneous reaction is stimulated. This results in the flow of <u>positively charged ions to negatively charged electrodes(</u><u>cathode</u><u>) and negatively charged ions to positively charged electrodes(</u><u>anode</u><u>)</u>
When an electric current is passed through molten
in the electrolytic cell, the following reactions takes place:
→
+ 2
At the anode;
Iodine ions will lose an electron and will be oxidized to iodine
→
+ 
At the cathode;
Barium ions gains electrons and its reduced to barium metal
+
→ Ba
Answer: The answer is S = 0.1528 cal/g °C
Explanation:
By the law of conservation of energy, energy is neither created nor destroyed.
So, energy lost by metal pieces is equal to the energy gained by water in the calorimeter.
Specific heat of water is 1 cal/g °C
⇒ heat energy Q = mSΔT, where m = mass of a substance
S = specific heat
ΔT = change in temperature
Now, the heat lost by metal piece, Q = 72×S×(96-31)
= 4680×S cal
Heat gained by water, Q = 130×1×(31-25.5)
= 715 cal
⇒ 4680×S = 715.
⇒ S = 0.1528 cal/g °C.
<u>Answer:</u> The fraction of atom's mass contributed by nucleus is 0.99
<u>Explanation:</u>
Nucleons are defined as the sub-atomic particles which are present in the nucleus of an atom. Nucleons are protons and neutrons.
The isotopic symbol of Helium-4 atom is 
Number of electrons = 2
Number of protons = 2
Number of neutrons = 4 - 2 = 2
We are given:
Mass of He-4 atom = 
Mass of 1 electron = 
Calculating the mass contributed by the nucleus = 
Mass of the nucleus of He-4 atom = 
To calculate the fraction of atom's mass contributed by the nucleus, we use the equation:

Putting values in above equation, we get:

Hence, the fraction of atom's mass contributed by nucleus is 0.99
Answer:
Oxygen can be made from hydrogen peroxide, which decomposes slowly to form water and oxygen:
hydrogen peroxide → water + oxygen
2H2O2(aq) → 2H2O(l) + O2(g)
The rate of reaction can be increased using a catalyst, manganese(IV) oxide. When manganese(IV) oxide is added to hydrogen peroxide, bubbles of oxygen are given off.
Apparatus arranged to measure the volume of gas in a reaction. Reaction mixture is in a flask and gas travels out through a pipe in the top and down into a trough of water. It then bubbles up through a beehive shelf into an upturned glass jar filled with water. The gas collects at the top of the jar, forcing water out into the trough below.
To make oxygen in the laboratory, hydrogen peroxide is poured into a conical flask containing some manganese(IV) oxide. The gas produced is collected in an upside-down gas jar filled with water. As the oxygen collects in the top of the gas jar, it pushes the water out.
Instead of the gas jar and water bath, a gas syringe could be used to collect the oxygen