Let
denote the rocket's position, velocity, and acceleration vectors at time
.
We're given its initial position

and velocity

Immediately after launch, the rocket is subject to gravity, so its acceleration is

where
.
a. We can obtain the velocity and position vectors by respectively integrating the acceleration and velocity functions. By the fundamental theorem of calculus,


(the integral of 0 is a constant, but it ultimately doesn't matter in this case)

and



b. The rocket stays in the air for as long as it takes until
, where
is the
-component of the position vector.

The range of the rocket is the distance between the rocket's final position and the origin (0, 0, 0):

c. The rocket reaches its maximum height when its vertical velocity (the
-component) is 0, at which point we have


Answer:
the answer is c, science CANNOT answer all questions
42
let the smallest even number be x, than the four even numbers are x, x+2, x+4, x+6, their sum is 180
x+x+2+x+4+x+6=180
4x+12=180
4x=168
x=42
the smallest even number is 42.
Answer:
t>12
Step-by-step explanation:
t>180/15
then divide 180 by 15
and you gey t>12
F(x) can be written as:
f(x) = Asin(2x); where A is the amplitude and the period of the function is half that of a normal sin function.
f(π/4) = 4
4 = Asin(2(π/4))
4 = Asin(π/2)
A = 4
Amplitude of g(x) = 1/2 * amplitude of f(x)
A for g(x) = 2
g(x) = 2sin(x)