Answer:
The lower confidence limit of the 95% confidence interval for the population proportion of Americans who were victims of identity theft is 0.0275.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the z-score that has a p-value of
.
A 2003 survey showed that 14 out of 250 Americans surveyed had suffered some kind of identity theft in the past 12 months.
This means that 
95% confidence level
So
, z is the value of Z that has a p-value of
, so
.
The lower limit of this interval is:

The lower confidence limit of the 95% confidence interval for the population proportion of Americans who were victims of identity theft is 0.0275.
Answer:
B : y − 3 = 2/3 ⋅ ( x − 3 )
Step-by-step explanation:
So
y=ax^2+bx+c
(x,y)
sub the points and solve
(4.28,6.48)
6.48=a(4.28)^2+b(4.28)+c
(12.61,15.04)
15.04=a(12.61)^2+b(12.61)+c
well, for 3 variables, we need equations and therefor 3 points
maybe we are supposed to assume it starts at (0,0)
so then
0=a(0)^2+b(0)+c
0=c
so then
6.48=a(4.28)^2+b(4.28)
15.04=a(12.61)^2+b(12.61)
solve for a by subsitution
first equation, minut a(4.28)^2 from both sides
6.48-a(4.28)^2=b(4.28)
divide both sides by 4.28
(6.48/4.28)-4.28a=b
sub that for b in other equation
15.04=a(12.61)^2+b(12.61)
15.04=a(12.61)^2+((6.48/4.28)-4.28a)(12.61)
expand
15.04 =a(12.61)^2+(81.7128/4.28)-53.9708a
minus (81.7128/4.28) both sides
15.04-(81.7128/4.28)=a(12.61)^2-53.9708a
15.04-(81.7128/4.28)=a((12.61)^2-53.9708)
(15.04-(81.7128/4.28))/(((12.61)^2-53.9708))=a
that's the exact value of a
to find b, subsitute to get
(6.48/4.28)-4.28((15.04-(81.7128/4.28))/(((12.61)^2-53.9708)))=b
if we aprox
a≈-0.038573167896199
b≈1.6791118501845
so then the equation is
y=-0.038573167896199x²+1.6791118501845x
Answer: 3944
All you have to do is multiply 58 x 68 to get the answer.
( hope this helped! )
-21.85.999
I found the ansewr by dividing both of the numbers to equal tthat