Here's a pattern to consider:
1+100=101
2+99=101
3+98=101
4+97=101
5+96=101
.....
This question relates to the discovery of Gauss, a mathematician. He found out that if you split 100 from 1-50 and 51-100, you could add them from each end to get a sum of 101. As there are 50 sets of addition, then the total is 50×101=5050
So, the sum of the first 100 positive integers is 5050.
Quick note
We can use a formula to find out the sum of an arithmetic series:

Where s is the sum of the series and n is the number of terms in the series. It works for the above problem.
5x = 1414
x = 1414 / 5
x = 282.80
Elsa's answer is incorrect since there is a solution of the given equation. In the given logarithmic problem, we need to simplify the problem by transposing log2(3x+5) in the opposite side. The equation will now be log2x-log2(3x+5)=4. Using properties of logarithm, we further simplify the problem into a new form log (2x/6x+10)=4. Then transform the equation into base form 10^4=(2x/6x+10) and proceed in solving for x value which is equal to 1.667.
omi god..... I used http://convert-to.com/202/speed-units.html and got
1.64 maybe if u try it would be different idk
Its 12. Part a was 2 part b was 3
6×2=12
4×3=12