-8/12
add together but keep the negative
Answer:
3
Step-by-step explanation:
It looks like the equation is
-sin²(<em>x</em>) = cos(2<em>x</em>)
Recall the half-angle identity for sine:
sin²(<em>x</em>) = (1 - cos(2<em>x</em>))/2
Then the equation can be written as
-(1 - cos(2<em>x</em>))/2 = cos(2<em>x</em>)
Solve for cos(2<em>x</em>):
-1/2 + 1/2 cos(2<em>x</em>) = cos(2<em>x</em>)
-1/2 = 1/2 cos(2<em>x</em>)
cos(2<em>x</em>) = -1
On the unit circle, cos(<em>y</em>) = -1 when <em>y</em> = arccos(-1) = <em>π</em>. Since cosine has a period of 2<em>π</em>, more generally we have cos(<em>y</em>) = -1 for <em>y</em> = <em>π</em> + 2<em>nπ</em> where <em>n</em> is any integer. Then
2<em>x</em> = <em>π</em> + 2<em>nπ</em>
<em>x</em> = <em>π</em>/2 + <em>nπ</em>
<em />
In the interval [-<em>π</em>, <em>π</em>], you get two solutions <em>x</em> = -<em>π</em>/2 and <em>x</em> = <em>π</em>/2.