Answer: In degrees , The measure of 
In radians , the measure of
.
Step-by-step explanation:
We know that the formula for length of arc is given by :-
, where
= Central angle subtended by arc.
r= radius of the circle.
As per given , we have
Radius of circle : r=7 m
Length of arc : l= 8 m
Substitute these values in the above formula , we get
Hence, the measure of
.
To convert it into degrees we multiply it with 
The measure of 


Hence, the measure of 
Answer:
4 minutes 3 seconds
Step-by-step explanation:
Step one:
Given data
A kangaroo hops 2 kilometers in 3 minutes
The rate/speed is
rate/speed= 2/3 km per minute
Required
the time taken to cover 3 km
Step two:
We know that
rate= distance/time
2/3= 3/t
cross multiply we have
2t=3*3
2t=9
divide both sides by 2
t= 9/2
t= 4.5 minutes
t= 4 minutes 3 seconds
Answer: GTA
Step-by-step explanation:
-7-1/2-5 because to solve, you do y2-y1/x2-x1
So you get -6/-3, which equals 2
SLOPE IS 2
Answer with explanation:

--------------------------------------------------------Dividing both sides by 8 x
This Integration is of the form ⇒y'+p y=q,which is Linear differential equation.
Integrating Factor
Multiplying both sides by Integrating Factor
![x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\times [y'+y\times\frac{1+4x^2}{8x}]=\frac{1}{8}\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\\\\ \text{Integrating both sides}\\\\y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\frac{1}{8}\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx \\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=-[x^{\frac{9}{8}}]\times\frac{ \Gamma(0.5625, -x^2)}{(-x^2)^{\frac{9}{16}}}\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=(-1)^{\frac{-1}{8}}[ \Gamma(0.5625, -x^2)]+C-----(1)](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5Ctimes%20%5By%27%2By%5Ctimes%5Cfrac%7B1%2B4x%5E2%7D%7B8x%7D%5D%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5C%5C%5C%5C%20%5Ctext%7BIntegrating%20both%20sides%7D%5C%5C%5C%5Cy%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Cint%20%7Bx%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%5Cint%20%7Bx%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%7D%20%5C%2C%20dx%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D-%5Bx%5E%7B%5Cfrac%7B9%7D%7B8%7D%7D%5D%5Ctimes%5Cfrac%7B%20%5CGamma%280.5625%2C%20-x%5E2%29%7D%7B%28-x%5E2%29%5E%7B%5Cfrac%7B9%7D%7B16%7D%7D%7D%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%28-1%29%5E%7B%5Cfrac%7B-1%7D%7B8%7D%7D%5B%20%5CGamma%280.5625%2C%20-x%5E2%29%5D%2BC-----%281%29)
When , x=1, gives , y=9.
Evaluate the value of C and substitute in the equation 1.