Answer:
One solution
Step-by-step explanation:
5x + y = 8
15x + 15y = 14
Lets solve using substitution, first we need to turn "5x + = 8" into "y = mx + b" or slope - intercept form
So we solve for "y" in the equation "5x + y = 8"
5x + y = 8
Step 1: Subtract 5x from both sides.
5x + y − 5x = 8 − 5x
Step 2: 5x subtracted by 5x cancel out and "8 - 5x" are flipped
y = −5x + 8
Now we can solve using substitution:
We substitute "-5x + 8" into the equation "15x + 15y = 14" for y
So it would look like this:
15x + 15(-5x + 8) = 14
Now we just solve for x
15x + (15)(−5x) + (15)(8) = 14(Distribute)
15x − 75x + 120 = 14
(15x − 75x) + (120) = 14(Combine Like Terms)
−60x + 120 = 14
Step 2: Subtract 120 from both sides.
−60x + 120 − 120 = 14 − 120
−60x = −106
Divide both sides by -60

Simplify

Now that we know the value of x, we can solve for y in any of the equations, but let's use the equation "y = −5x + 8"





















So there is only one solution to the equation.
Angles 1 and 3 are vertical lines and because they are vertical, both angles equal each other.
Answer:
-600
Step-by-step explanation:
4 x 10 x 3 x 5 x -1
40 x 15 x -1
600 x -1 = -600
Answer:
Step-by-step explanation:
A suitable table or calculator is needed.
One standard deviation from the mean includes 68.27% of the total, so the number of bottles in the range 20 ± 0.16 ounces will be ...
0.6827·26,000 = 17,750 . . . . . within 20 ± 0.16
__
The number below 1.5 standard deviations below the mean is about 6.68%, so for the given sample size is expected to be ...
0.66799·26,000 = 1737 . . . . . below 19.76
_____
<em>Comment on the first number</em>
The "empirical rule" tells you that 68% of the population is within 1 standard deviation (0.16 ounces) of the mean. When the number involved is expected to be expressed to 5 significant digits, your probability value needs better accuracy than that. To 6 digits, the value is 0.682689, which gives the same "rounded to the nearest integer" value as the one shown above.
Answer: -2x² - 15x + 11
Step-by-step explanation: