Answer:
Mitochondria- glycolysis
ATP synthase- converts ADP to ATP
Inner membrane- electron transport chain
Matrix- krebs cycle
Explanation:
The mitochondria forms the fundamental site for glycolysis. The glucose is broken down enzymatically to produce carbon dioxide, water and ATP. The krebs cycle is the first stage of aerobic respiration. It takes place in the mitochondrial matrix. ATP synthase is an enzyme that generates ATP during the process of cellular respiration. ATP synthase forms ATP from ADP and an inorganic phosphate (Pi) through oxidative phosphorylation. The mitochondrial inner membrane is the site of the electron transport chain, an important step in aerobic respiration. Energy obtained through the transfer of electrons down the ETC is used to pump protons from the matrix into the intermembrane space, creating an electrochemical proton gradient generating ATP.
Answer:
send me the link to that website and ill research it for you
Explanation:
D the cell mitochondria utilize cellular respiration to generate glucose that gives the flagella energy to move
Answer:
Explanation:
A mutation is a change that occurs in our DNA sequence, either due to mistakes when the DNA is copied or as the result of environmental factors such as UV light and cigarette smoke. Mutations can occur during DNA replication if errors are made and not corrected in time.
Caffeine cause dose dependent prominent increase in force of contraction and period of contraction of muscle
<u>Explanation:</u>
Caffeine is widely used in foods and drinks. Its long time use can effect central nervous system include lethargy memory, sleep disorder and anxiety.
Increase in concentration of calcium ion will result increase number of power stroke and force for contraction. However latent period and relaxation period are unaffected by caffeine. Increase in concentration of calcium ion will result increase number of power stroke and force for contraction.
Because of calcium ion release in skeletal muscle, caffeine causes peripheral manifestation such as hyper-reflexia, muscle twitching etc.
High amount of caffeine leads to increase in release of Ca2+ from sarcoplasmic reticulum. It increases tension development in single tetanic contraction and re-initiate maximum tension in fatigue single myofibre by restoring Ca2+ release from sarcoplasmic reticulum to non-fatigued levels.