Answer:

Step-by-step explanation:


Answer:
heieirh hwgsge isjrbrgy eiriusbr iwirurh Kluber.....
Answer:
D) ![\left[\begin{array}{c}\frac{5}{4}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B5%7D%7B4%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
For matrix ![\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
the inverse matrix is the transpose of the cofactor matrix, divided by the determinant: ![\dfrac{1}{ad-bc}\left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7Bad-bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dd%26-b%5C%5C-c%26a%5Cend%7Barray%7D%5Cright%5D)
Your inverse matrix is: ![\dfrac{1}{2(-3)-(1)(2)}\left[\begin{array}{cc}-3&-1\\-2&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%28-3%29-%281%29%282%29%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-3%26-1%5C%5C-2%262%5Cend%7Barray%7D%5Cright%5D)
so the solution is ...
![\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{cc}\frac{3}{8}&\frac{1}{8}\\\frac{1}{4}&-\frac{1}{4}\end{array}\right] \cdot\left[\begin{array}{c}2\\4\end{array}\right] =\left[\begin{array}{c}\frac{5}{4}\\-\frac{1}{2}\end{array}\right] \qquad\text{matches selection D}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B8%7D%26%5Cfrac%7B1%7D%7B8%7D%5C%5C%5Cfrac%7B1%7D%7B4%7D%26-%5Cfrac%7B1%7D%7B4%7D%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C4%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B5%7D%7B4%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%5Cqquad%5Ctext%7Bmatches%20selection%20D%7D)
Answer:
The last rem of the polynomial is -500
Step-by-step explanation:
We have given that the profit a business earn by selling items is given by polynomial 
We have to find the last term of the polynomial when it is written in standard form
For writing in standard form first we have to do operation on the polynomial
So 
So the last rem of the polynomial is -500