Answer:
5 + 2x = 6
2x = 6-5
2x = 1
x = 0.5
n -3n = 14 -4n
-2n = 14-4n (since 4n is negative, change the sign to make it positive and then add 4n to both sides of the equation)
2n = 14
n = 7
7 (5a - 4) - 1 = 14 - 8a
35a - 28 - 1 = 14 -8a
35a -29 = 14 - 8a
43a = 43
a = 1
Answer:

Step-by-step explanation:
Given that , the sum of the first nine terms of an arithmetic series is 162 and the sum of the first 12 terms is 288.

<h3>
<u>Related</u><u> </u><u>Infor</u><u>mation</u><u> </u><u>:</u><u>-</u><u> </u></h3>
• The sum of n terms of an AP is
• nth term of an AP is given by ,

Answer:
The price of the cereal boxes
Step-by-step explanation:
A. 352 seconds or 5 minutes 52 seconds.
B. 320 seconds or 5 minutes and 20 seconds
C. 27687 steps
There are 5280 feet per mile. In A, 3 strides per second at 5 feet gives us 15 ft per second. 5280/15 = 352 seconds. In B, 3 strides per second at 5.5 feet gives us 16.5 feet per second. 5280/16.5 = 320 seconds. In C, we calculate the total feet to divide by 5 per step. multiply 26 miles by 5280 to get feet per mile and multiply 385 by 3 to get the feet per yard. Add them together. then divide by 5. 26(5280) + 385(3) =138435. 138435/5 = 27687 steps
Answer:
The answer is below
Step-by-step explanation:
The horizontal asymptote of a function f(x) is gotten by finding the limit as x ⇒ ∞ or x ⇒ -∞. If the limit gives you a finite value, then your asymptote is at that point.
![\lim_{x \to \infty} f(x)=A\\\\or\\\\ \lim_{x \to -\infty} f(x)=A\\\\where\ A\ is\ a\ finite\ value.\\\\Given\ that \ f(x) =25000(1+0.025)^x\\\\ \lim_{x \to \infty} f(x)= \lim_{x \to \infty} [25000(1+0.025)^x]= \lim_{x \to \infty} [25000(1.025)^x]\\=25000 \lim_{x \to \infty} [(1.025)^x]=25000(\infty)=\infty\\\\ \lim_{x \to -\infty} f(x)= \lim_{x \to -\infty} [25000(1+0.025)^x]= \lim_{x \to -\infty} [25000(1.025)^x]\\=25000 \lim_{x \to -\infty} [(1.025)^x]=25000(0)=0\\\\](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20f%28x%29%3DA%5C%5C%5C%5Cor%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20f%28x%29%3DA%5C%5C%5C%5Cwhere%5C%20A%5C%20is%5C%20a%5C%20finite%5C%20value.%5C%5C%5C%5CGiven%5C%20that%20%5C%20f%28x%29%20%3D25000%281%2B0.025%29%5Ex%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20f%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B25000%281%2B0.025%29%5Ex%5D%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B25000%281.025%29%5Ex%5D%5C%5C%3D25000%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B%281.025%29%5Ex%5D%3D25000%28%5Cinfty%29%3D%5Cinfty%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20f%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B25000%281%2B0.025%29%5Ex%5D%3D%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B25000%281.025%29%5Ex%5D%5C%5C%3D25000%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B%281.025%29%5Ex%5D%3D25000%280%29%3D0%5C%5C%5C%5C)
