Here we have a case of the least common multipl(lcm) of 6 and 20.
Prime numbers 2,3,5,7,11,13,17,19... (natural numbers greater than 1 that has no positive divisors other than 1 and itself) .
lcm(6,20)= 6 20 | 2
3 10 | 3
1 10 | 2
5 | 5
1
2*3*2*5=60 The first one to get both calendar and the animal toy will be 60th.
Explenation: First we look for the smallest prime number with wich 6 and 20 can be devided by. That is 2. Next is 3. Since 10 is not divisible by 3, we only copy it. Under the 6 we got 1, wich is our goal. Now we continue to devide 10 by prime numbers till we also get 1. We now multiple all divisors and we get the least common multiple.
Answer:
On a coordinate plane, a line goes through (0, 3) and (2, 4) and another line goes through (0, 3) and (0.75, 0).
This answer almost coincide with option C. I suppose there was a mistype.
Step-by-step explanation:
The system of equations is formed by:
–x + 2y = 6
4x + y = 3
In the picture attached, the solution set is shown.
The first equation goes through (0, 3) and (2, 4), as can be checked by:
–(0) + 2(3) = 6
–(2) + 2(4) = 6
The second goes through (0, 3) and (0.75, 0), as can be checked by:
4(0) + (3) = 3
4(0.75) + (0) = 3
147 63 82 101 155 160 175 92 116 138 74 93 110 162 154 105 97
The frequency to her third group is 80 - 99.
16.92 × 8.4 = 142.128
This is called the product
Answer:
second option, IQR = 13-6 = 7 and Range = 17-6 = 11
Step-by-step explanation: