Answer:
T1 = 975 / (205 + V) flying with wind
T2 = 975 / (205 - V) flying against wind
T2 = T1 + 2
975 * {1 / (205 - V) - 1 / (205 + V)] = 2
(205 + V + V -205) / (205^2 - V^2) = 2 / 975
V^2 + 975 V - 42025 = 0 rearranging
V = 41.3
Values of flying are 246.3 and 163.7
Check:
T1 = 975 / 246.3 = 3.96 hrs
T2 = 975 / 163.7 = 5.96 hrs
F(x) = -2x²
g(x) = 2x - 4
f(x) = g(x)
-2x² = 2x - 4
-2x² - 2x = 2x - 2x - 4
-2x² - 2x + 4 = -4 + 4
-2x² - 2x + 4 = 0
-2(x²) - 2(x) - 2(-2) = 0
-2(x² - x - 2) = 0
-2 -2
x² - x - 2 = 0
x² + 2x - x - 2 = 0
x(x) + x(2) - 1(x) - 1(2) = 0
x(x + 2) - 1(x + 2) = 0
(x - 1)(x + 2) = 0
x - 1 = 0 or x + 2 = 0
+ 1 + 1 - 2 - 2
x = 1 or x = -2
f(x) = g(x)
-2x² = 2x - 4
-2(-2)² = 2(-2) - 4
-2(4) = -4 - 4
-8 = -8
or
f(x) = g(x)
-2x² = 2x - 4
-2(1)² = 2(1) - 4
-2 = 2 - 4
-2 = -2
Solution Sets: {(-2, -8), (1, -2)}
Tbh, they are in the correct order!