The answer is 76. multiply 15 times 4 which is 60.
and the triangle is the difference of the sides, so 19-15=4.
so then multiply the base and height, this leaves 4x4 which is 16.
then add the two. 60+ 16= 76
Answer:
The country's population for the year 2030 is 368.8 million.
Step-by-step explanation:
The differential equation is:

Integrate the differential equation to determine the equation of P in terms of <em>t</em> as follows:
![\int\limits {\frac{1}{P(600-P)} } \, dP =k\int\limits {1} \, dt \\(\frac{1}{600} )[(\int\limits {\frac{1}{P} } \, dP) - (\int\limits {\frac{}{600-P} } \, dP)]=k\int\limits {1} \, dt\\\ln P-\ln (600-P)=600kt+C\\\ln (\frac{P}{600-P} )=600kt+C\\\frac{P}{600-P} = Ce^{600kt}](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7B1%7D%7BP%28600-P%29%7D%20%7D%20%5C%2C%20dP%20%3Dk%5Cint%5Climits%20%7B1%7D%20%5C%2C%20dt%20%5C%5C%28%5Cfrac%7B1%7D%7B600%7D%20%29%5B%28%5Cint%5Climits%20%7B%5Cfrac%7B1%7D%7BP%7D%20%7D%20%5C%2C%20dP%29%20-%20%28%5Cint%5Climits%20%7B%5Cfrac%7B%7D%7B600-P%7D%20%7D%20%5C%2C%20dP%29%5D%3Dk%5Cint%5Climits%20%7B1%7D%20%5C%2C%20dt%5C%5C%5Cln%20P-%5Cln%20%28600-P%29%3D600kt%2BC%5C%5C%5Cln%20%28%5Cfrac%7BP%7D%7B600-P%7D%20%29%3D600kt%2BC%5C%5C%5Cfrac%7BP%7D%7B600-P%7D%20%3D%20Ce%5E%7B600kt%7D)
At <em>t</em> = 0 the value of <em>P</em> is 300 million.
Determine the value of constant C as follows:

It is provided that the population growth rate is 1 million per year.
Then for the year 1961, the population is: P (1) = 301
Then
.
Determine <em>k</em> as follows:

For the year 2030, P (2030) = P (70).
Determine the value of P (70) as follows:

Thus, the country's population for the year 2030 is 368.8 million.
If my maths are correct it would be $3,000
Answer:
65625/4(x^5)(y²)
Step-by-step explanation:
Using binomial expansion
Formula: (n k) (a^k)(b ^(n-k))
Where (n k) represents n combination of k (nCk)
From the question k = 5 (i.e. 5th term)
n = 7 (power of expression)
a = 5x
b = -y/2
....................
Solving nCk
n = 7
k = 5
nCk = 7C5
= 7!/(5!2!) ------ Expand Expression
=7 * 6 * 5! /(5! * 2*1)
= 7*6/2
= 21 ------
.........................
Solving (a^k) (b^(n-k))
a = 5x
b = -y/2
k = 5
n = 7
Substituting these values in the expression
(5x)^5 * (-y/2)^(7-5)
= (3125x^5) * (-y/2)²
= 3125x^5 * y²/4
= (3125x^5)(y²)/4
------------------------------------
Multiplying the two expression above
21 * (3125x^5)(y²)/4
= 65625/4(x^5)(y²)