Answer:
Hyperbola
Step-by-step explanation:
The polar equation of a conic section with directrix ± d has the standard form:
r=ed/(1 ± ecosθ)
where e = the eccentricity.
The eccentricity determines the type of conic section:
e = 0 ⇒ circle
0 < e < 1 ⇒ ellipse
e = 1 ⇒ parabola
e > 1 ⇒ hyperbola
Step 1. <em>Convert the equation to standard form
</em>
r = 4/(2 – 4 cosθ)
Divide numerator and denominator by 2
r = 2/(1 - 2cosθ)
Step 2. <em>Identify the conic
</em>
e = 2, so the conic is a hyperbola.
The polar plot of the function (below) confirms that the conic is a hyperbola.
Answer:
x=6.09cm
Step-by-step explanation:
Working out AB:
7.5²+4.9²
= √80.26
AB= 8.96cm
To work out x:
AB is the opposite, where BC is the adjacent. This means that we have to use TOA.
x=8.96/Tan(55.8)
x= 6.09cm
1) 1/6
2) 1/3
3) 1/2
4) 1/6
5)1/3
6) 1/3
If its wrong , sry..
The zeros of given function
is – 5 and – 3
<u>Solution:</u>

We have to find the zeros of the function by rewriting the function in intercept form.
By using intercept form, we can put value of y as to obtain zeros of function
We know that, intercept form of above equation is 


Taking “x” as common from first two terms and “3” as common from last two terms
x (x + 5) + 3(x + 5) = 0
(x + 5)(x + 3) = 0
Equating to 0 we get,
x + 5 = 0 or x + 3 = 0
x = - 5 or – 3
Hence, the zeroes of the given function are – 5 and – 3