Answer:
The answer is below
Step-by-step explanation:
The Angle Addition Postulate states that the measure of an angle formed by two or more angles which are placed side by side is the sum of the measures of the two angles.
Therefore:
∠MON = ∠MOP + ∠NOP (angle addition postulate)
Substituting values gives:
124 = (2x + 1) + (2x + 1)
124 = 2x + 2x + 1 + 1
124 = 4x + 2
subtracting 2 from both sides of the equation:
124 - 2 = 4x + 2 - 2
4x = 122
Dividing through by 4:
4x / 4 = 122 / 4
x = 30.5
Therefore ∠MOP = 2x + 1 = 2(30.5) + 1 = 62°, ∠NOP = 2x + 1 = 2(30.5) + 1 = 62°
∠MOP = 62°, ∠NOP = 62°
F(x) = ㏑(x² - 4)
Domain: {-2 ≤ x ≤ 2}, or [-2, 2]
Answer:
40
Step-by-step explanation:
Ok, so basically let's start with a proportion.
x/32 = 11.25/9
Cross multiply:
x * 9 = 32 * 11.25
9x = 32 * 11.25
9x = 360
Solving for variable 'x'.
Divide each side by '9'.
x = 40
I don't know if this is the correct answer, but it was based on my math. I hope this helps!
Answer:
I believe (D)
Step-by-step explanation:
-5x + 7 = -13
-7 -7
-5x = -20
-5/-5 -20÷-5
x=4
You want to compare the square root of 55 using "mental math". Start off by choosing two perfect squares that you can think of that are close to 55.
If you don't know perfect squares then start with the number 2 and multiply it by itself. 2 times 2 equals 4, so 4 is a perfect square.
Take the number 3, multiply it by itself, and so on. Do this for all the numbers until you find two perfect squares that are close to 55.
The two perfect squares closest to 55 are the square roots of 49 and 64. Find the square root of these numbers.
√49 = 7
√64 = 8
Calculate how far 55 is from 49 and 64. 55 is 6 digits away from 49 and 9 digits away from 64.
This means the square root of 55 will be closer to the square root of 49; 7. Since we know that it will be closer to 7, you can put the less than sign for your answer.
√55 < 7.7
(The actual square root of 55 is ~7.4, so we were correct in determining the answer without using a calculator!)