D with technology warnings are easier to give out to everyone allowing them to go to shelter
Answer;
Tuberculosis
Explanation;
Bloodborne transmission involves transmission through contact with infected human blood and other body fluids such as semen, viginal secretions etc.
These pathogens include; HBV, HIV, STD's and viral hemorrhagic fevers.
Tuberculosis (TB) is not transmitted through the blooborne method but through airborne particles.
Answer:
Lactate: fermentation in human muscle
Ethanol: fermentation in yeast and bacteria
Acetyl CoA: aerobic oxidation
Explanation:
Lactate is produced in lactic fermentation in human muscle. Lactic fermentation in muscle cells is a process that occurs alternatively, in situations where the body does not perform aerobic respiration. Considered a short-term metabolic device, activated when the body is subjected to intense physical effort under conditions of low muscular oxygenation.
Alcoholic Fermentation, also known as ethanol fermentation, is the anaerobic pathway performed by yeast and some bacteria, in which simple sugars are converted to ethanol and carbon dioxide. Yeasts usually function under aerobic conditions, either in the presence of oxygen, but are also capable of functioning under anaerobic conditions, or in the absence of oxygen. When oxygen is not readily available, fermentation alcoholic beverages occur in the yeast cell cytoplasm.
Acetyl CoA results from aerobic oxidation. This process occurs in mitochondria during cellular respiration, where pyruvate, the product of glycolysis, can be substituted, and often is, by fatty acids. This is because pyruvic acid is used to form a compound called Acetyl Coenzyme A or Acetyl CoA. In this sense, Acetyl CoA can also be produced by the degradation of fatty acids by a reaction called β oxidation.
Answer:
The electron microscope
Explanation:
<u>The microscope that would be best suited to study the inner structure of the chloroplast would be the electron microscope.</u>
<em>The electron microscope has a high magnifying property due to the fact that it uses a beam of accelerated electrons as a source of illumination, unlike the light microscope that uses visible light. While the light microscope might be enough to see the inner portion and the organelles of the cell, the tiny nature of the inner structure of the chloroplast means that the light microscope will not be able to view the details. A more powerful microscope like the electron microscope would be required.</em>