Question 1:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
Equation: y = 5x - 2
Slope = 5
Slope of parallel line = 5
--------------------------------------------------------------------
Insert slope into the general equation y = mx + c
--------------------------------------------------------------------
y = 5x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
At point (2, -1)
y = 5x + c
-1 = 5(2) + c
c = -1 - 10
c = -11
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 5x + c
y = 5x - 11
--------------------------------------------------------------------
Answer: y = 5x - 11
--------------------------------------------------------------------
Question 2:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
y = 9x
Slope = 9
Slope of the parallel line = 9
--------------------------------------------------------------------
Insert slope into the equation y = mx + c
--------------------------------------------------------------------
y = 9x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
y = 9x + c
At point (0, 5)
5 = 9(0) + c
c = 5
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 9x + c
y = 9x + 5
--------------------------------------------------------------------
Answer: y = 9x + 5
--------------------------------------------------------------------
Answer:
b. 144.8
Step-by-step explanation:
When calculating the moving average estimate of an observation , each of the observations are usually computed with the same weighted . In some cases, it is beneficial to assign different weight on the observations such that the observation closer to the time period being forecast, has higher weight. This is refer to as weighted moving average technique. The sum of the individual weight in a weighted moving average technique must equal to 1.
The three-period weighted moving average forecast for period 5 = 144*0.5 + 148 *0.3 + 142 *0.2 = 144.8
Answer:
20 cm
Step-by-step explanation:
Shadow of vertical poles : 6m ; 15m
Length of poles : 8cm ; h
8cm long pole = shadow length, 6m
h cm long pole = shadow length, 15 m
Using cross multiplication :
8cm * 15 m = h cm * 6m
120 = 6h
h = 120 / 6
h = 20 cm
Height of second pole = 20cm
Answer:
X≤3
Step-by-step explanation:
This is because the arrow is moving down the number line
1.C 2. No 3.A hope this help