The initial cost is 189.69. It is marked up 30%.
By simple calculations,
Final cost of the tablet computer = Initial price + 30% of marked price
= 189.69 + (30/100 x 189.69)
This gives us the net value of 245.7. Hence the price of the computer after it's been marked up will be 245.7
Use the side lengths! C and D have lengths of 3 and heights of 4.
Also use how far away they are from the axis.
Both C and D are 2 away from each axis on the end point.
This also goes with A.
However, B does not seem to be congruent in the sense of (coordinates)
It is the same length and height.
Answer:
- is the answers for the question
Step-by-step explanation:
please mark me as brainlest
Answer:
Given definite integral as a limit of Riemann sums is:
![\lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5E%7Bn%7D%20_%7Bi%3D1%7D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Step-by-step explanation:
Given definite integral is:

Substituting (2) in above
![f(x_{i})=\frac{1}{2}(4+\frac{3}{n}i)+(4+\frac{3}{n}i)^{3}\\\\f(x_{i})=(2+\frac{3}{2n}i)+(64+\frac{27}{n^{3}}i^{3}+3(16)\frac{3}{n}i+3(4)\frac{9}{n^{2}}i^{2})\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{3}{2n}i+\frac{144}{n}i+66\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{291}{2n}i+66\\\\f(x_{i})=3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=f%28x_%7Bi%7D%29%3D%5Cfrac%7B1%7D%7B2%7D%284%2B%5Cfrac%7B3%7D%7Bn%7Di%29%2B%284%2B%5Cfrac%7B3%7D%7Bn%7Di%29%5E%7B3%7D%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%282%2B%5Cfrac%7B3%7D%7B2n%7Di%29%2B%2864%2B%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B3%2816%29%5Cfrac%7B3%7D%7Bn%7Di%2B3%284%29%5Cfrac%7B9%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%29%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B108%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B3%7D%7B2n%7Di%2B%5Cfrac%7B144%7D%7Bn%7Di%2B66%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B108%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B291%7D%7B2n%7Di%2B66%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Riemann sum is:
![= \lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5E%7Bn%7D%20_%7Bi%3D1%7D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Formula is:
Number of reams per case x number of cases
11 x 12 = 132 reams