1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NARA [144]
3 years ago
11

The equation f = 0 + at represents the final velocity of an object, f, with an initial velocity, v, and an acceleration rate,

Mathematics
1 answer:
balandron [24]3 years ago
4 0

Answer: option 1 is the correct answer

Step-by-step explanation:

This equation is one of the Newton's equations of motion.

The equation is f = v + at which represents the final velocity of an object, f, with an initial velocity, v, and an acceleration rate, a, over time, t.

To determine an equivalent equation solved for a, we will make a the subject of the formula.

f = v+at

subtracting v from both sides of the equation, it becomes

f-v = 0 + at

Dividing both sides of the equation by t, it becomes

f -v = at

a = (f-v)/t

Option 1 is correct answer

You might be interested in
The probability that Terry buys a sandwich is 0.4.
lara31 [8.8K]

0.4 * 0.6 this gives

0.24

5 0
3 years ago
Answer to 24 pls and thanks :D ik its super simple but im not very good at this and i forgot how to do it, and you guys get like
iogann1982 [59]
There is no picture given for us to answer the question!
8 0
3 years ago
It's a ven dyagram question pls help
slamgirl [31]

Answer:

a) A U B = {21,23,24,25,27,29,30,31 }

b) A n C = {24,30}

Step-by-step explanation:

A {21,24,27,30}

B {21,23,25,27,29,31}

C {20,22,24,26,28,30,32}

a) A U B = {21,23,24,25,27,29,30,31 }

b) A n C = {24,30}

5 0
2 years ago
How do you solve:<br><br> 5x^2 + 25x - 70
Oxana [17]
<span>
</span><span>Equation at the end of step  1  :</span><span> (5x2 - 25x) - 70 = 0 </span><span>Step  2  :</span><span>Step  3  :</span>Pulling out like terms :

<span> 3.1 </span>    Pull out like factors :

  <span> 5x2 - 25x - 70</span>  =  <span> 5 • (x2 - 5x - 14)</span> 

Trying to factor by splitting the middle term

<span> 3.2 </span>    Factoring <span> x2 - 5x - 14</span> 

The first term is, <span> <span>x2</span> </span> its coefficient is <span> 1 </span>.
The middle term is, <span> -5x </span> its coefficient is <span> -5 </span>.
The last term, "the constant", is <span> -14 </span>

Step-1 : Multiply the coefficient of the first term by the constant <span> <span> 1</span> • -14 = -14</span> 

Step-2 : Find two factors of  -14  whose sum equals the coefficient of the middle term, which is  <span> -5 </span>.

<span><span>     -14   +   1   =   -13</span><span>     -7   +   2   =   -5   That's it</span></span>


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -7  and  2 
                     <span>x2 - 7x</span> + 2x - 14

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-7)
              Add up the last 2 terms, pulling out common factors :
                    2 • (x-7)
Step-5 : Add up the four terms of step 4 :
                    (x+2)  •  (x-7)
             Which is the desired factorization

<span>Equation at the end of step  3  :</span> 5 • (x + 2) • (x - 7) = 0 <span>Step  4  :</span>Theory - Roots of a product :

<span> 4.1 </span>   A product of several terms equals zero.<span> 

 </span>When a product of two or more terms equals zero, then at least one of the terms must be zero.<span> 

 </span>We shall now solve each term = 0 separately<span> 

 </span>In other words, we are going to solve as many equations as there are terms in the product<span> 

 </span>Any solution of term = 0 solves product = 0 as well.

Equations which are never true :

<span> 4.2 </span>     Solve :    5   =  0

<span>This equation has no solution.
</span>A a non-zero constant never equals zero.

Solving a Single Variable Equation :

<span> 4.3 </span>     Solve  :    x+2 = 0<span> 

 </span>Subtract  2  from both sides of the equation :<span> 
 </span>                     x = -2 

Solving a Single Variable Equation :

<span> 4.4 </span>     Solve  :    x-7 = 0<span> 

 </span>Add  7  to both sides of the equation :<span> 
 </span>                     x = 7 

Supplement : Solving Quadratic Equation Directly<span>Solving <span> x2-5x-14</span>  = 0 directly </span>

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

<span> 5.1 </span>     Find the Vertex of   <span>y = x2-5x-14

</span>Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero).<span> 

 </span>Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions.<span> 

 </span>Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex.<span> 

 </span>For any parabola,<span>Ax2+Bx+C,</span>the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   2.5000 <span> 

 </span>Plugging into the parabola formula   2.5000  for  x  we can calculate the  y -coordinate :<span> 
 </span><span> y = 1.0 * 2.50 * 2.50 - 5.0 * 2.50 - 14.0 
</span>or   y = -20.250

Parabola, Graphing Vertex and X-Intercepts :

Root plot for : <span> y = x2-5x-14</span>
Axis of Symmetry (dashed)  {x}={ 2.50} 
Vertex at  {x,y} = { 2.50,-20.25}  
 x -Intercepts (Roots) :
Root 1 at  {x,y} = {-2.00, 0.00} 
Root 2 at  {x,y} = { 7.00, 0.00} 

Solve Quadratic Equation by Completing The Square

<span> 5.2 </span>    Solving  <span> x2-5x-14 = 0</span> by Completing The Square<span> .

 </span>Add <span> 14 </span> to both side of the equation : 
  <span> x2-5x = 14</span>

Now the clever bit: Take the coefficient of  x , which is <span> 5</span> , divide by two, giving <span> 5/2</span> , and finally square it giving <span> 25/4</span> 

Add <span> 25/4</span>  to both sides of the equation :
  On the right hand side we have :
   14  +  25/4    or,  (14/1)+(25/4) 
  The common denominator of the two fractions is  4   Adding  (56/4)+(25/4)  gives  81/4 
  So adding to both sides we finally get :
  <span> x2-5x+(25/4) = 81/4</span>

Adding <span> 25/4</span>  has completed the left hand side into a perfect square :
  <span> <span>x2-5x+(25/4)</span> </span> =
   (x-(5/2)) • (x-(5/2))  =
  <span>(x-(5/2))2 </span>
Things which are equal to the same thing are also equal to one another. Since
  <span> x2-5x+(25/4) = 81/4</span> and
  <span> x2-5x+(25/4) = (x-(5/2))2 </span>
then, according to the law of transitivity,
  <span> (x-(5/2))2 = 81/4</span>

We'll refer to this Equation as  Eq. #5.2.1  

The <span>Square Root Principle </span>says that When two things are equal, their square roots are equal.

Note that the square root of
  <span> <span>(x-(5/2))2 </span> </span> is
  <span> <span>(x-(5/2))2/2</span> =
  <span>(x-(5/2))1</span> =
   x-(5/2)</span>

Now, applying the Square Root Principle to  Eq. #5.2.1  we get:
  <span> x-(5/2) = <span>√<span> 81/4 </span></span></span>

Add <span> 5/2 </span> to both sides to obtain:
  <span> x = 5/2 + √<span> 81/4 </span></span>

Since a square root has two values, one positive and the other negative
  <span> x2 - 5x - 14 = 0</span>
   has two solutions:
  <span>x = 5/2 + √<span> 81/4 </span></span>
   or
  <span>x = 5/2 - √<span> 81/4 </span></span>

Note that <span> √<span> 81/4 </span></span>can be written as
  <span>√ 81  / √ 4 </span>  which is <span>9 / 2 </span>

Solve Quadratic Equation using the Quadratic Formula

<span> 5.3 </span>    Solving   <span> x2-5x-14 = 0</span> by the Quadratic Formula<span> .

 </span>

3 0
3 years ago
Read 2 more answers
Which solid figure is made of only triangular faces?
kakasveta [241]

Answer:

Triangular Pyramid

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Bristol is analyzing positive daily customer feedback on different restaurants to find the perfect place to invest. She would li
    6·1 answer
  • How much does all the angles in a quadrilateral equal up to?
    9·1 answer
  • Valerie accidentally backed her car into a dumpster and damaged her bumper. The body shop estimated her damages to be $650. If h
    5·1 answer
  • Why does this system of equations have infinitely many solutions?
    15·1 answer
  • Mrs marks wants to buy 89 pens. If the pens come in packs of 10, how many packs does she need to buy
    6·2 answers
  • The carpet for the office you completed cost $576. If you're using the same carpet in the new client's bedroom, how much will it
    11·1 answer
  • Please find answer. ​
    11·2 answers
  • Max wrote the number 0.785. After multiplying his number by a power of 10, he arrived at the number 7,850.0. What power of 10 di
    5·1 answer
  • Martin bought a flower vase from a florist. The box in which the vase was packed was shaped like a rectangular prism. What is th
    10·1 answer
  • Please helpppppppp I need asap
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!