
And
_________________________________
So :

And

_________________________________
So to find g(x) , we must find the inverse of f(x) .
Let's do it .....


Subtract the sides of the equation minus 1

Divided the sides of the equation by 8

From the sides of the equation, we take the radical with interval 3
![\sqrt[3]{ \frac{y - 1}{8} } = x \\](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7By%20-%201%7D%7B8%7D%20%7D%20%3D%20x%20%5C%5C%20%20)
![\sqrt[3]{ \frac{1}{8}(y - 1) } = x \\](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B1%7D%7B8%7D%28y%20-%201%29%20%7D%20%3D%20x%20%5C%5C%20%20)
![\frac{1}{2} \sqrt[3]{y - 1} = x \\](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%5B3%5D%7By%20-%201%7D%20%3D%20x%20%5C%5C%20%20%20)
![\frac{ \sqrt[3]{y - 1} }{2} = x \\](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7By%20-%201%7D%20%7D%7B2%7D%20%3D%20x%20%5C%5C%20%20)
So ;
![{f}^{ - 1}(x) = \frac{ \sqrt[3]{x - 1} }{2} \\](https://tex.z-dn.net/?f=%20%7Bf%7D%5E%7B%20-%201%7D%28x%29%20%3D%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7Bx%20-%201%7D%20%7D%7B2%7D%20%5C%5C%20%20%20%20)
Now we find g(x) which is :
![g(x) = \frac{ \sqrt[3]{x - 1} }{2} \\](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7Bx%20-%201%7D%20%7D%7B2%7D%20%5C%5C%20%20)
_________________________________
And we're done.
Thanks for watching buddy good luck.
♥️♥️♥️♥️♥️