1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
3 years ago
7

Triangle ABC is an equilateral triangle with side AB, BC, and AC. If side BC is equal to 10 cm what is the measure of side AC?

Mathematics
2 answers:
nordsb [41]3 years ago
7 0

Answer:

AC = 10 cm

Step-by-step explanation:

We are givne with a triangle ABC is an equilateral triangle with side AB, BC, and AC. We are given that side BC is equal to 10 cm . We are required to find the measurement of side AC.

The basic property of any equilateral triangle is that all the sides are equal. Hence

AB = BC = CA

BC=10 cm

Hence, AB = 10 cm and also AC=10 cm

Kay [80]3 years ago
5 0

Answer:

AC =10cm.

Step-by-step explanation:

Given : Triangle ABC is an equilateral triangle with side AB, BC, and AC. If side BC is equal to 10 cm .

To find :  what is the measure of side AC.

Solution : We have given

Triangle ABC is an equilateral triangle with side AB, BC, and AC.

Equilateral triangle : The triangle which has all equal sides .

So,we have given One side BC = 10 cm

So all the side would be AB= 10 cm.

AC = 10 cm.

Therefore, AC =10cm.

You might be interested in
Identify the property used in the first four steps to solve this equation.
vovikov84 [41]

Step 1: Distributive Property

Step 2: Subtraction Property of Equality

Step 3: Addition Property of Equality

Step 4: Division Property of Equality

7 0
3 years ago
The area of the triangle is eqaula to the sqare show that x²-3x-2=0​
agasfer [191]

Answer:

Step-by-step explanation:

Area of square = area of triangle

side*side = \dfrac{1}{2}b*h\\\\\\x*x=\dfrac{1}{2}*(x+1)(x+2)\\x^{2}=\dfrac{1}{2}[x*x +x*2+1*x+1*2]\\\\\\x^{2}=\dfrac{1}{2}[x^{2}+2x+x+2]\\\\\\x^{2}=\dfrac{1}{2}[x^{2}+3x+2]\\\\\\Multiply \ both \ sides \ by \ 2\\\\2x^{2}=x^{2}+3x+2\\\\2x^{2}-x^{2}-3x-2 = 0

x² - 3x - 2 = 0

8 0
2 years ago
I need help with this question please
madam [21]

Answer:go there and it will answer your question

<h2 />

Step-by-step explanation:

6 0
3 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Plz help me
Iteru [2.4K]

Answer:

I think the answer is 60 feet.

Step-by-step explanation:

Because his rate is 2 feet per second and the question asks where he'll be after 30 seconds, the answer has to be 60 feet.

I hope this helps!

5 0
3 years ago
Other questions:
  • PLEASE BE KIND AND HELP ME ON THIS QUESTION!<br> WARNING ONLY IF YOUR GOOD AT MATH
    9·1 answer
  • Ahmad runs 6 miles in 45 minutes. At the same rate, how many minutes would he take to run 4 miles?
    8·2 answers
  • the distance from a star to a planet is approximately 98,000,000 miles. if the light travels at a rate of 186,000 miles per seco
    7·1 answer
  • Show 2 ways that 6 people can share an 8-segment chewy fruit worm
    11·1 answer
  • The ___ of a two-dimensional figure can be any side.
    13·1 answer
  • Black Diamond Ski Resort charges $25 for ski rental and $10 an hour to ski. Bunny Hill Ski Resort charges $50 for ski rental and
    12·2 answers
  • Find the function and simplify the function rule.<br> f(x) = 5x + 1 g(x) = 3x - 4<br> (f+g)(x) =
    8·1 answer
  • !!!!please need help on this asap
    7·1 answer
  • What is 22.5 as a mixed number/ In it's simplest form?
    12·2 answers
  • The Smith family goes out for lunch, and the price of the meal is $45.The sales tax on the meal is 6%, and the family also leave
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!