Answer:
The exponential function to model the duck population is:
f(n)=415*(1.32)^n, where:
x is the duck population
n is the number of years
Step-by-step explanation:
In order to calculate the duck population you can use the formula to calculate future value:
FV=PV*(1+r)^n
FV=future value
PV=present value
r=rate
n=number of periods of time
In this case, the present value is the initial population of 415 and the rate is 32%. You can replace these values on the formula and the exponential function to model the duck population would be:
f(n)=415*(1+0.32)^n
f(n)=415*(1.32)^n, where:
x is the duck population
n is the number of years
The general formula for the margin of error would be:
z * √[p (1-p) ÷ n]
where:
z = values for selected confidence level
p = sample proportion
n = sample size
Since the confidence level is not given, we can only solve for the
<span>√[p (1-p) ÷ n] part.
</span>
p = 44/70
n = 70
√[44/70 (1 - (44/70) ÷ 70]
√[0.6286 (0.3714)] ÷ 70
√0.2335 ÷ 70
√0.0033357 = 0.05775 or 0.058 Choice B.
Answer:
6.65 kilometers
Step-by-step explanation:
7.38-0.73=6.65
Add the two angles and set them equal to 180, them solve for x