1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ipn [44]
4 years ago
12

4z - 7y + 2 + 2y + y + 62 - 15 Your answer

Mathematics
1 answer:
Natalka [10]4 years ago
6 0

Answer:

simplified: −4y+4z+49

Step-by-step explanation:

=4z+−7y+2+2y+y+62+−15

Combine Like Terms:

=4z+−7y+2+2y+y+62+−15

=(−7y+2y+y)+(4z)+(2+62+−15)

=−4y+4z+49

You might be interested in
The graph of y=f(x) is the solid black graph below. Which function represents the dotted graph?
Fed [463]

Answer:   y = f(x - 4) - 1, lower left corner

=============================================================

Explanation:

Let's focus on only the left-most points of each curve

For the black semicircle, the left-most point is located at (-7,0). The corresponding point on the red semicircle is at (-3,-1)

To go from (-7,0) to (-3,-1), we will do two things

  • Shift 4 units to the right
  • Shift 1 unit down

This can be done in any order. The action of "shift 4 units to the right" is effectively the same as shifting the xy axis 4 units to the left while keeping the curves fixed in place. This gives the illusion of movement. When we shift 4 the xy axis 4 units to the left, we're replacing each x input with x-4 as the new input.

In short, we go from f(x) to f(x-4). This is why we have this opposite motion going on.

The up and down motion is fairly straight forward. To shift 1 unit down, we subtract off 1. This is to subtract 1 from the y coordinate.

Overall, we go from y = f(x) to y = f(x - 4) - 1

Applying this transformation will move (-7,0) to (-3,-1) as described above. It will also move every other point on the black curve to their new corresponding location on the red curve.

3 0
3 years ago
A company produces and sells widgets and gizmos. In January the company sold 350 items for a total of $9,000. If each widget sol
iren [92.7K]

Answer:

The company sold 100 widgets and 250 gizmos.

Step-by-step explanation:

Let x_1 be the number of widgets sold and x_2 be the number of gizmos sold.

We are told that the company sold 350 items. We can represent this information in an equation as:

x_1+x_2=350...(1)

We have been given that a each widget sold for $35 and each gizmo sold for $22. The company sold 350 items for a total of $9,000.

We can represent this information in an equation as:

35x_1+22x_2=9,000...(2)

From equation (1), we will get:

x_2=350-x_1

Substitute this value in equation (2):

35x_1+22(350-x_1)=9,000

35x_1+7,700-22x_1=9,000

13x_1+7,700=9,000

13x_1+7,700-7,700=9,000-7,700

13x_1=1,300

\frac{13x_1}{13}=\frac{1,300}{13}

x_1=100

Therefore, the company sold 100 widgets.

Substitute x_1=100 in equation (1):

100+x_2=350

100-100+x_2=350-100

x_2=250

Therefore, the company sold 250 gizmos.

3 0
3 years ago
Read 2 more answers
Explain how to simplify radical expressions without variables
vampirchik [111]
U just gotta do it you know
3 0
3 years ago
Read 2 more answers
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
14 + w is the same as which expression?
Vanyuwa [196]

Answer:

w+14,

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • The residual plot for a data set is shown. Based on the residual plot, which statement best explains whether the regression line
    6·1 answer
  • Starting at the top of a square pyramid and make a vertical slice cutting pyramid in half what is the shape of the newly-exposed
    5·1 answer
  • Find the area of a rectangle with a width of x3 + 5x - 9 and a length of x2 + 8.
    6·1 answer
  • There are 360 people in my school. 15 take calculus, physics, and chemistry, and 15 don't take any of them. 180 take calculus. T
    9·1 answer
  • Ccacacvssvvssjdsvshxb de s zzz dat herh
    12·1 answer
  • 6 2/3 percent as a decimal
    15·2 answers
  • For the real valued functions f(x) = x-4/x-5 and g(x) = 4x+17, find the composition fog and specify its domain using interval no
    8·1 answer
  • What’s the correct answer for this?
    7·2 answers
  • What the answer to this math problem
    15·1 answer
  • Si el punto (5,0) está en una gráfica, żes (5,0)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!