Answer:
The Second Answer , <em><u>a </u></em><em><u>pattern </u></em><em><u>of </u></em><em><u>two-dimensional </u></em><em><u>shapes </u></em><em><u>that </u></em><em><u>can </u></em><em><u>be </u></em><em><u>folded </u></em><em><u>to </u></em><em><u>form </u></em><em><u>a </u></em><em><u>solid </u></em><em><u>figure </u></em><em><u>.</u></em><em><u> </u></em>
Answer:
The answer Is 10.20
Step-by-step explanation:
d = \/(0-(-2))² + (-6-4)²
d = \/(0+2)² + (-10)²
d = \/(2² + 100)
d = \/(4+100)
d = \/104
d ~ 10,20
Answer:
29.4 cm
Step-by-step explanation:
The length of the space diagonal can be found to be the root of the squares of the three orthogonal edge lengths. For a cube, those edge lengths are all the same, so the diagonal length is ...
d = √(17^2 + 17^2 +17^2) = 17√3 ≈ 29.4 . . . . cm
_____
Consider a rectangular prism with edge lengths a, b, c. Then the face diagonal of the face perpendicular to edge "a" has length ...
(face diagonal)^2 = (b^2 +c^2)
and the space diagonal has length ...
(space diagonal)^2 = a^2 + (face diagonal)^2 = a^2 +b^2 +c^2
So, the length of the space diagonal is ...
space diagonal = √(a^2 +b^2 +c^2)
when the prism is a cube, these are all the same (a=b=c). This is the formula we used above.
Answer:
y=4x+5 is 4 and 4/1
the next one is y=8x+3
hope this helps
Step-by-step explanation:
Step-by-step explanation:
YES! HOP THIS HELPS