Which ordered pair in the form (x, y) is a solution of this equation? (x 3)y = 14 (11, 1) (7, 2) (5, 2) (3, 2)
1 answer:
You have to replace x and y by each pair in the equation and find the answer 14. IF you replace the pair (11,1) you will get (11+3)*1=14 solve this and you get 14=14 so ordered pair is (11,1)
You might be interested in
P(2oranges and 1lemon)=2/3 (orange) · 1/2 (lemon) P(2O and 1L) = 2/6 = 1/3 1/3 chance of getting 2 orange and 1 lemon out of the bag.
Step-by-step explanation:
1 in red is the rectangle
2 is yellow is square
3 in perpel is a rhombus
4 is not in Quadrilaterals
5 in green us parallelogram
6 is the trapezoid
i think i helped you
4 3
Answer:
<h3>Question 1</h3>
sec²θ + cosec²θ = 1/cos²θ + 1/sin²θ = (sin²θ + cos²θ)/(sin²θcos²θ) = 1 / (sin²θcos²θ) = [(sin²θ + cos²θ)/sinθcosθ]² = (sinθ/cosθ + cosθ/sinθ)² = (tanθ + cotθ)² <h3>Question 2</h3>
(1 - tan²θ) / (1 + tan²θ) = (1 - sin²θ/cos²θ) / (1 + sin²θ/cos²θ) = (cos²θ - sin²θ) / (cos²θ + sin²θ) = (cosθ + sinθ)(cosθ - sinθ) / 1 = (cosθ + sinθ)(cosθ - sinθ) <h3>Question 3</h3>
sinθ/ (1 - cotθ) + cosθ / (1 - tanθ) = sinθ / (1 - cosθ/sinθ) + cosθ / (1 - sinθ/cosθ) = sinθ/ [(sinθ - cosθ) / sinθ] + cosθ / [(cosθ - sinθ)/cosθ] = sin²θ/ (sinθ - cosθ) + cos²θ/(cosθ - sinθ) = sin²θ/ (sinθ - cosθ) - cos²θ/(sinθ - cosθ) = (sin²θ - cos²θ) / (sinθ - cosθ) = (sinθ + cosθ)(sinθ - cosθ) / (sinθ - cosθ) = sinθ + cosθ
Answer:
i think its philip releases an arrow from a sholder height 4 ft.
Step-by-step explanation: