For a mutation to affect evolution it has to be passed on to all the offspring if that is what you mean.
Explanation:
High-energy electrons are transported from the chlorophyll to other molecules by electron carriers beginning with pheophytin, P0 (a form of chlorophyll), then A1 phylloquinone etc.
The chloroplast is an organelle attached to the membrane found in plants. This comprises many plasma membrane invaginations called the thylakoid membrane. It contains chlorophyll pigments, called granum in rows, while the organelle's internal areas are called the lumen. Water fills the granum and the stroma is created.
Further Explanation:
<em>During the light reaction: </em>
- Photosystem II (PSII) contains pigments which consume light energy. This energy is exchanged between pigments until it enters the reaction core and is moved to P680; this transfers an electron to a higher level of energy where it then travels to a molecule of acceptors.
- For those removed from photosystem II, water supplies the chlorophyll in plant cell with substitute electrons. Additionally, water (H2O) divided into H+ and OH-by light during photolysis acts as a source of oxygen along with functioning as a reducer.
- The electron moves down the electron transport chain via several electron carriers
- The e- is delivered (to PS I) where it has a continuous loss of energy. Such energy drives the drainage of H+ from the stroma to the thykaloid, which results in a gradient creation. The H+ pass down their curve, passing into the stroma by ATP synthase.
- ATP synthase converts ADP and Pi to the ATP molecule, which stores energy.
- The electron enters Photosystem I where it heads to P700 pigments. It's. This consumes light energy, transfers the electron to a higher energy level, and moves it on to an acceptor electron. This leaves room for another electron which is then replaced by a photosystem II electron.
- In the ETC the NADP molecule is reduced to NADPH by supplying H+ ions. NADP and NADPH are vital to the Calvin cycle, in which monosaccharides or glucose-like sugars are produced after several molecules have been modified.
Learn more about photosynthesis at brainly.com/question/4216541
Learn more about cellular life at brainly.com/question/11259903
#LearnWithBrainly
Answer:
Covalent bonds form when two atoms share valence electrons,
while Van der Waals forces cause an attraction between nonpolar
molecules
Explanation:
A covalent bond is said to be formed when two atoms of the same or different elements share electrons. In an ordinary covalent bond, each bonding atom contributes one valence electron while in a dative covalent bond only one of the bonding atoms provides the shared pair of electrons.
Van Der Waals forces is the major intermolecular interaction between non polar compounds. Van Der Waals forces " are caused by correlations in the fluctuating polarizations of nearby particles"(Wikipedia).
Answer: Carbon dioxide
Explanation:
The forests and phytoplankton are carbon sinks, which absorbs the green house gas carbon dioxide from the atmosphere for photosynthesis. The carbon dioxide from the atmosphere and water are used as reactant in photosynthesis to yield carbohydrates and oxygen as products. Thus the carbon dioxide level in atmosphere decreases. This is necessary for controlling pollution in the environment and reducing the environmental temperature as carbon dioxide can make the environment warm.
Solar energy<span> drives the </span>cycle by evaporating water<span> from the oceans, lakes, rivers, and even the soil. Other </span>water<span> moves from </span>plants to<span> the atmosphere through the process of transpiration.</span> Plants put down roots into the soil to draw water and nutrients<span> up into the stems </span>and leaves. Some of this water<span> is returned to the air by transpiration (when combined with evaporation, the total process is known as evapotranspiration).
</span>