Rotating 180 degrees about the point p.
If they are perpendicular reflecting across each one will have the same effect as if the point was rotated 180 degrees about the certain point.
Answer:
p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
Given
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Required
Collect like terms
We start by rewriting the expression
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Collect like terms
3p²q² -3p²q² - 3p²q³ +4p²q³ + pq
Group like terms
(3p²q² -3p²q²) - (3p²q³ - 4p²q³ ) + pq
Perform arithmetic operations on like terms
(0) - (-p²q³) + pq
- (-p²q³) + pq
Open bracket
p²q³ + pq
The answer can be further simplified
Factorize p²q³ + pq
pq(pq² + 1)
Hence, 3p²q² - 3p²q³ +4p²q³ -3p²q² + pq is equivalent to p²q³ + pq and pq(pq² + 1)
Answer:
the first one goes by 4n-1
the Second sequence goes by 3n + 13
Step-by-step explanation:
using the formula an=a1+d(n-1)
(f * g)(x) = 4x^2(x + 1)
4x^3 + 4x^2