Answer:

Step-by-step explanation:
We are given the following in the question:
The numbers of teams remaining in each round follows a geometric sequence.
Let a be the first the of the geometric sequence and r be the common ration.
The
term of geometric sequence is given by:


Dividing the two equations, we get,

the first term can be calculated as:

Thus, the required geometric sequence is

They are not, because inverse means multiply by -1, therefore, there should be a positive sign in front of 2 and a negative in front of x for G(x) = x - 2
Answer:
2) 162°, 72°, 108°
3) 144°, 54°, 126°
Step-by-step explanation:
1) Multiply the equation by 2sin(θ) to get an equation that looks like ...
sin(θ) = <some numerical expression>
Use your knowledge of the sines of special angles to find two angles that have this sine value. (The attached table along with the relations discussed below will get you there.)
____
2, 3) You need to review the meaning of "supplement".
It is true that ...
sin(θ) = sin(θ+360°),
but it is also true that ...
sin(θ) = sin(180°-θ) . . . . the supplement of the angle
This latter relation is the one applicable to this question.
__
Similarly, it is true that ...
cos(θ) = -cos(θ+180°),
but it is also true that ...
cos(θ) = -cos(180°-θ) . . . . the supplement of the angle
As above, it is this latter relation that applies to problems 2 and 3.
The distributive property of division over addition and substraction is idk