Answer:
X is negative 5/ -5
Step-by-step explanation:
Answer:
is that a T or F
Step-by-step explanation:
Answer:
we conclude that:
If 4x - 6≠4, then 2x–5≠5 is the contrapositive of a conditional statement if 2x -5=5, then 4x-6=14.
Step-by-step explanation:
We know that the contrapositive of a conditional statement of the form "If p then q" is termed as "If ~q then ~p".
In other words, it is symbolically represented as:
' ~q ~p is the contrapositive of p q '
For example, the contrapositive of "If it is a rainy day, then they suspend the match" is "If they do not suspend the match, then it won't be a rainy day."
Given
p: 2x -5=5
q: 4x-6=14
As the contrapositive of a conditional statement of the form "If p then q" is termed as "If ~q then ~p
Thus, we conclude that:
If 4x - 6≠4, then 2x–5≠5 is the contrapositive of a conditional statement if 2x -5=5, then 4x-6=14.
Answer:
<u>Part 1:</u>
For Platinum Gym:
90 + 30x
For Super Fit Gym:
200 + 20x
<u>Part 2:</u> $270
<u>Part 3:</u> $320
<u>Part 4:</u> 11 months
<u>Part 5:</u> See explanation below
Step-by-step explanation:
<u>Part 1:</u>
Let "x" be the number of months:
For Platinum Gym:
90 + 30x
For Super Fit Gym:
200 + 20x
<u>Part 2:</u>
We put x = 6 in platinum gym's equation and get our answer.
90 + 30x
90 + 30(6)
90 + 180
=$270
<u>Part 3:</u>
We put x = 6 into super fit's equation and get our answer.
200 + 20x
200 + 20(6)
200 + 120
=$320
<u>Part 4:</u>
To find the number of months for both gyms to cost same, we need to equate both equations and solve for x:
90 + 30x = 200 + 20x
10x = 110
x = 11
So 11 months
<u>Part 5:</u>
We know for 11 months, they will cost same. Let's check for 10 months and 12 months.
In 10 months:
Platinum = 90 + 30(10) = 390
Super Fit = 200 + 20(10) = 400
In 12 months:
Platinum = 90 + 30(12) = 450
Super Fit = 200 + 20(12) = 440
Thus, we can see that Platinum Gym is a better deal if you want to get membership for months less than 11 and Super Fit is a better deal if you want to get membership for months greater than 11.