Answer:
Normal Strand: alanine - methionine - histidine
Mutated Strand: glutamine - cysteine - no third amino acid.
Explanation:
<h3>mRNA Structure</h3>
Messenger ribonucleic acid (mRNA) is the RNA that is used in cells for protein synthesis. It has a single strand made by the transcription of DNA by RNA polymerase. It contains four nucleotides: Adenine (A), Guanine (G), Cytosine (C), and Uracil (U).
<h3>DNA Replication</h3>
Before transcribing, we need to create the complementary strand of the DNA. We're going to write out the nucleotides of the complementary strand by matching the nucleotides in these pairs: (A & T) and (C & G).
Normal Strand: GCA ATG CAC
Complementary Strand: CGT TAC GTG
Next, we can transcribe this to find our mRNA. We're going to do the same thing to the complementary DNA strand, but with Uracils instead of Thymines. So our pairs are: (A & U) and (C & G)
Complementary DNA Strand: CGT TAC GTG
mRNA Strand: GCA AUG CAC
You'll notice that the mRNA strand is almost exactly like the new mRNA strand, but with Uracil instead of Thymine.
<h3>Reading Codons</h3>
Each set of three nucleotides is known as a codon, which encodes the amino acids that ribosomes make into proteins. To read the codons, you need to have a chart like the one I attached. Start in the middle and work your way to the edge of the circle. Some amino acids have multiple codons. There are also "stop" and "start" codons that signify the beginning and ends of proteins.
mRNA Strand: GCA AUG CAC
Amino Acids: Ala Met His
Our sequence is alanine, methionine, and histidine.
<h3>Frameshift Mutations</h3>
A frameshift mutation occurs when a nucleotide is either added or removed from the DNA. It causes your reading frame to shift and will mess up every codon past where the mutation was. This is different than a point mutation, where a nucleotide is <em>swapped</em> because that will only mess up the one codon that it happened in. Frameshift mutations are usually more detrimental than point mutations because they cause wider spread damage.
<h3>Mutated Strand</h3>
Let's repeat what we did earlier on the mutated strand to see what changed.
Mutated Strand: CAA TGC AC
Complementary Strand: GTT ACG TG
---
Complementary DNA Strand: GTT ACG TG
mRNA Strand: CAA UGC AC
---
mRNA Strand: CAA UGC AC
Amino Acids: Glu Cys X
---
Our amino acid sequence is glutamine, cysteine, and no third amino acid.
As you can see, removing the first nucleotide of the strand caused every codon to change. The last codon is now incomplete and won't be read at all. If this happened in a cell, the protein that was created from this mutated strand would be incorrect and may not function completely or at all.
Answer:
Many Indians believe in Hinduism, which preaches that cows are sacred. They might choose not to eat cow even during times of starvation because they are afraid of the consequences that come in the afterlife. Because cows are sacred, Indians believe that eating them might incur a net negative benefit when considering the afterlife.
Explanation:
No article was provided and I don't particularly know much about the subject so this is my best guess. Please adapt this answer accordingly.
Thank you for posting your question here. Below are the choices that can be found elsewhere:
a. a new mutation allowed moths to survive
<span>b. the light moths had an advantage </span>
<span>c. the phenotype frequency changed </span>
<span>d. moths learned to adapt to their environment
</span>
The answer is C
Answer:
Choice D
Explanation:
Water molecules exhibit hydrogen bonded to oxygen, which is considered a hydrogen bond. This is the strongest type of bond and is not easily broken. Once formed, a large amount of heat is needed to disrupt the bond energy and break apart the molecule. Therefore, water has a high heat capacity and can withstand higher temperatures than that of some other liquids.
Answer:
Autotrophs make their own food through the process of photosynthesis. They use sunlight, water and carbon dioxide to produce glucose and oxygen.
Plants are the most common autotrophs, but algae and cyanobacteria are also autotrophs.
Hope this helps! :)