Answer:
Step-by-step explanation:
You can get your calculator to do this for you. 3 ÷ 4 = 0.75
1 ÷ 0.75 = 1.3333
or you can divide by 3/4 by hand
1
----
1
=====
3
-----
4
1 * 4
--- ----------- ====== 1.33333
1 * 3
Answer:
cool
Step-by-step explanation:
Answer:
Step-by-step explanation:
It is convenient to memorize the trig functions of the "special angles" of 30°, 45°, 60°, as well as the way the signs of trig functions change in the different quadrants. Realizing that the (x, y) coordinates on the unit circle correspond to (cos(θ), sin(θ)) can make it somewhat easier.
__
<h3>20.</h3>
You have memorized that cos(x) = (√3)/2 is true for x = 30°. That is the reference angle for the 2nd-quadrant angle 180° -30° = 150°, and for the 3rd-quadrant angle 180° +30° = 210°.
Cos(x) is negative in the 2nd and 3rd quadrants, so the angles you're looking for are
150° and 210°
__
<h3>Bonus</h3>
You have memorized that sin(π/4) = √2/2, and that cos(3π/4) = -√2/2. The sum of these values is ...
√2/2 + (-√2/2) = 0
_____
<em>Additional comments</em>
Your calculator can help you with both of these problems.
The coordinates given on the attached unit circle chart are (cos(θ), sin(θ)).
This question is incomplete, the complete question is;
Let X denote the time in minutes (rounded to the nearest half minute) for a blood sample to be taken. The probability mass function for X is:
x 0 0.5 1 1.5 2 2.5
f(x) 0.1 0.2 0.3 0.2 0.1 0.1
determine;
a) P( X < 2.5 )
B) P( 0.75 < X ≤ 1.5 )
Answer:
a) P( X < 2.5 ) = 0.9
b) P( 0.75 < X ≤ 1.5 ) = 0.5
Step-by-step explanation:
Given the data in the question;
The probability mass function for X is:
x 0 0.5 1 1.5 2 2.5
f(x) 0.1 0.2 0.3 0.2 0.1 0.1
a) P( X < 2.5 )
P( X < 2.5 ) = p[ x = 0 ] + p[ x = 0.5 ] + p[ x = 1 ] + p[ x = 1.5 ] + p[ x = 2 ]
so
P( X < 2.5 ) = 0.1 + 0.2 + 0.3 + 0.2 + 0.1
P( X < 2.5 ) = 0.9
b) P( 0.75 < X ≤ 1.5 )
P( 0.75 < X ≤ 1.5 ) = p[ x = 1 ] + p[ x = 1.5 ]
so
P( 0.75 < X ≤ 1.5 ) = 0.3 + 0.2
P( 0.75 < X ≤ 1.5 ) = 0.5