1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
15

Evaluate:-19 - (-10) + (20) - (30) - (-15) A) -4 B) -3 C) 3 D) 4

Mathematics
2 answers:
Tresset [83]3 years ago
4 0

So firstly, remember that <u>subtracting a negative number is the same as adding a positive number</u> so our expression will look like this:

-19+10+20-30+15

Now solve as such:

\underbrace{-19+10}_{-9}+20-30+15\\\\\underbrace{-9+20}_{11}-30+15\\\\\underbrace{11-30}_{-19}+15\\\\\underbrace{-19+15}_{-4}\\\\-4

<u>Your answer is -4, or A.</u>

Ede4ka [16]3 years ago
4 0

Answer:  A) -4

Step-by-step explanation: usatestprep approved

You might be interested in
Can anyone help this is confusing??
Marysya12 [62]

Answer:

volume is just defined as multplying all the sides and is alot different from surface area, so it would be 1/5x1/5x/14 which is 1/100

Step-by-step explanation:

5 0
3 years ago
Please help. the packet is due tonight
Zolol [24]

Answer:

[C]  \displaystyle \frac{-3}{250}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Functions
  • Function Notation
  • Conjugations

<u>Calculus</u>

  • Limits
  • Limit Rule [Variable Direct Substitution]:                                                     \displaystyle \lim_{x \to c} x = c
  • Limit Property [Multiplied Constant]:                                                           \displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)
  • Derivatives
  • Definition of a Derivative:                                                                             \displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle g(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

\displaystyle f(x) = \frac{3}{\sqrt{x - 4}}

\displaystyle g(29)

<u>Step 2: Differentiate</u>

  1. Substitute in function [Function g(x)]:                                                           \displaystyle g(x) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{x + h - 4}} - \frac{3}{\sqrt{x - 4}}}{h}
  2. Substitute in <em>x</em> [Function g(x)]:                                                                       \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{29 + h - 4}} - \frac{3}{\sqrt{29 - 4}}}{h}
  3. Simplify:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{25 + h}} - \frac{3}{5}}{h}
  4. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15}{5\sqrt{25 + h}} - \frac{3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  5. [Subtraction] Combine like terms:                                                               \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15 - 3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  6. Factor:                                                                                                           \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3(5 - \sqrt{25 + h})}{5\sqrt{25 + h}}}{h}
  7. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{3(5 - \sqrt{25 + h})}{5h\sqrt{25 + h}}
  8. Rewrite [Limit Property - Multiplied Constant]:                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}}
  9. Root Conjugation:                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}} \cdot \frac{5 + \sqrt{25 + h}}{5 + \sqrt{25 + h}}
  10. Multiply:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{5h\sqrt{25 + h} + h^2 + 25h}
  11. Factor:                                                                                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{h(5\sqrt{25 + h} + h + 25)}
  12. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + h} + h + 25}
  13. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + 0} + 0 + 25}
  14. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \cdot \frac{-1}{50}
  15. Multiply:                                                                                                         \displaystyle g(29) = \frac{-3}{250}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

8 0
3 years ago
Raymond just got done jumping at Super Bounce Trampoline Center. The total cost of his session was $43.25. He has to pay a $7 en
pantera1 [17]
7+1.25x=43.25
-7. - 7.00
____________
1.25x = 36.25
___________
1.25x. 1.25
x = 29
4 0
3 years ago
Read 2 more answers
Did I do this right?
Dimas [21]
Yeah that’s correct
5 0
3 years ago
Read 2 more answers
A certain test preparation course is designed to help students improve their scores on the LSAT exam. A mock exam is given at th
nasty-shy [4]

Answer:

(9.6, 25.7) is a 80% confidence interval for the average net change in a student's score after completing the course.

Step-by-step explanation:

We have n = 6, \bar{x} =  17.6667 and s = 13.3367. The confidence interval is given by

\bar{x}\pm t_{\alpha/2}(\frac{s}{\sqrt{n}}) where t_{\alpha/2} is the \alpha/2th quantile of the t distribution with n-1=5 degrees of freedom. As we want the 80% confidence interval, we have that \alpha = 0.2 and the confidence interval is 17.6667\pm t_{0.1}(\frac{13.3367}{\sqrt{6}}) where t_{0.1} is the 10th quantile of the t distribution with 5 df, i.e., t_{0.1} = -1.4759. Then, we have 17.6667\pm (1.4759)(\frac{13.3367}{\sqrt{6}}) and the 80% confidence interval is given by (9.6, 25.7)

6 0
3 years ago
Other questions:
  • 2x=56-20y<br> -16x=92-20y
    7·1 answer
  • A given bacteria culture initially contains 2500 bacteria and doubles every half hour. The number of bacteria p at a given time
    6·1 answer
  • A linear function can be used to estimate the decrease in snowfall measured since 1920. The decrease in the annual snowfall has
    11·2 answers
  • Which fraction is the smallest? Just to see if y’all smart
    11·1 answer
  • The perimeter of a rectangle is 96 ft. The ratio of its length to its width is 7 : 5. What are the dimensions of the rectangle?
    12·1 answer
  • Karen is trying to decide which home phone company to use. PhoneHome was a monthly charge of
    14·1 answer
  • HELP ASAP PLZ Identify the angle relationships formed (spelling is important). Determine the value of x. Then determine the meas
    11·1 answer
  • Work out the size of angle x <br> Next to 164 and 90
    10·1 answer
  • Please someone help me with this
    6·2 answers
  • Name the smallest angle of AABC. The diagram is not to scale.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!