Factor by grouping. Group up the terms into pairs, factor each pair, then factor out the overall GCF.
x^3 + 2x^2 - 16x - 32
(x^3 + 2x^2) + (-16x-32) ... pair up terms
x^2(x + 2) + (-16x - 32) ... factor x^2 from the first group
x^2(x + 2) - 16(x + 2) ... factor -16 from the second group
(x^2 - 16)(x + 2) .... factor out (x+2)
(x - 4)(x + 4)(x + 2) .... Use the difference of squares to factor x^2-16
---------------------------
The original expression completely factors to (x - 4)(x + 4)(x + 2)
The three factors are x - 4 and x + 4 and x + 2
Well Im just guessing but 1 1/2 foot
The answer for the first slot is Alternate Interior Angles Theorem
Angle B and angle G are inside the "train tracks" formed by AB and GH. They are on opposite sides of the transversal line BG.
Along a similar line of reasoning, the answer for the second slot is Alternate Exterior Angles Theorem
The two parallel lines in question are AC and FH. The transversal line is FC. Angles ACB and HFG are on the exterior of the "train tracks" formed by the parallel lines.
A and D that’s the answer