Answer:
Probability Distribution={(A, 4/7), (B, 2/7), (C, 1/7)}
H(X)=5.4224 bits per symb
H(X|Y="not C")=0.54902 bits per symb
Explanation:
P(B)=2P(C)
P(A)=2P(B)
But
P(A)+P(B)+P(C)=1
4P(C)+2P(C)+P(C)=1
P(C)=1/7
Then
P(A)=4/7
P(B)=2/7
Probability Distribution={(A, 4/7), (B, 2/7), (C, 1/7)}
iii
If X={A,B,C}
and P(Xi)={4/7,2/7,1/7}
where Id =logarithm to base 2
Entropy, H(X)=-{P(A) Id P(A) +P(B) Id P(B) + P(C) Id P(C)}
=-{(1/7)Id1/7 +(2/7)Id(2/7) +(4/7)Id(4/7)}
=5.4224 bits per symb
if P(C) =0
P(A)=2P(B)
P(B)=1/3
P(A)=2/3
H(X|Y="not C")= -(1/3)Id(I/3) -(2/3)Id(2/3)
=0.54902 bits per symb