Answer: 37
Step-by-step explanation:
<h3>Answer to Question 1:</h3>
AB= 24cm
BC = 7cm
<B = 90°
AC = ?
<h3>Using Pythagoras theorem :-</h3>
AC^2 = AB^2 + BC ^ 2
AC^2 = 24^2 + 7^2
AC^2 = 576 + 49
AC^2 = √625
AC = 25
<h3>Answer to Question 2 :-</h3>
sin A = 3/4
CosA = ?
TanA = ?
<h3>SinA = Opp. side/Hypotenuse</h3><h3> = 3/4</h3>
(Construct a triangle right angled at B with one side BC of 3cm and hypotenuse AC of 4cm.)
<h3>Using Pythagoras theorem :-</h3>
AC^2 = AB^2 + BC ^ 2
4² = AB² + 3²
16 = AB + 9
AB = √7cm
<h3>CosA = Adjacent side/Hypotenuse</h3>
= AB/AC
= √7/4
<h3>TanA= Opp. side/Adjacent side</h3>
=BC/AB
= 3/√7
Arrange your given equation to resembles the form
a^2 +2ab+ b^2 because this equals (a+b)^2
So we get:
y^2+16y+8^2=0
Now compare
y^2+16y+8^2 to a^2 +2ab+ b^2
So we got
y^2+2•8 y+8^2=0 which equals (y+8)^2
Answer:
The answer world be 3.
Step-by-step explanation:
5 + 2² - 3(2) = 3