Answer:
C) They are part of a community
Explanation:
A community represents the sum total of populations of different species present together in an area or ecosystem. In a community, the organisms of these different species may benefit or harm each other and exhibit little or more interdependence. In the given example, beer, insects, ants, chipmunks represent the organisms of different species that are present together in a habitat. They interact with each other in various ways. For instance, the bear is a predator of insects.
Answer:
If the two organisms are heterozygous for the dominant trait.
Explanation:
For every trait, a diploid organism receives two forms of gene called ALLELE, from each parent. Allele is the variant form of a gene.
According to Mendel's law of dominance, for a particular trait, an allele is capable of masking the expression of another allele in a gene. The expressed allele is called the DOMINANT allele while the masked allele is called the RECESSIVE allele. Due to this, an organism can express a dominant trait even in a combined or heterozygous state i.e. different alleles.
When the two heterozygous organisms mate or are crossed, they undergo meiosis and their alleles are separated into GAMETES according to Mendel's law of segregation. For example; an organism with genotype (genetic make-up) Aa will produce gametes with A and a alleles.
Note that, a recessive trait can only be expressed in a homozygous state i.e. same allele. Hence, the two heterozygous organisms will produce gametes containing the recessive allele, which will likely combine to produce a recessive phenotype or trait.
Your answer would be D, Photosynthesis
Hope this helps!
To be able to compare the results to a sample without any of the independent variable added.
Explanation:
Red-shift
Emission spectra
Light from a star does not contain all the wavelengths of the electromagnetic spectrum. Elements in the star absorb some of the emitted wavelengths, so dark lines are present when the spectrum is analysed. Different elements produce different patterns of dark lines. The diagram shows part of the emission spectrum of light from the Sun.
A gradient colour spectrum of the sun.
Spectra from distant galaxies
Astronomers can observe light from distant galaxies. When they do this, they see it is different to the light from the Sun. The dark lines in the spectra from distant galaxies show an increase in wavelength. The lines are moved or shifted towards the red end of the spectrum. This effect is called red-shift. The diagram shows part of the emission spectrum of light from a distant galaxy.
A gradient colour spectrum of a distant star.
Red-shift and speed
Astronomers see red-shift in virtually all galaxies. It is a result of the space between the Earth and the galaxies expanding. This expansion stretches out the light waves during their journey to us, shifting them towards the red end of the spectrum. The more red-shifted the light from a galaxy is, the faster the galaxy is moving away from Earth