1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
4 years ago
8

What is a better deal 56/25 or 32.05/15

Mathematics
1 answer:
saul85 [17]4 years ago
8 0

We are given fractions: \frac{56}{25} \ or \ \frac{32.05}{15}.

Let us convert those both fractions in decimals only to get the better deal.

For first fraction 56/25, if we divide 56 by 25, we get

56 ÷ 25 = 2.24 decimal value.

And for second fraction 32.05/15 if we divide 32.05 by 15, we get

32.05 ÷ 15 = 2.14 (approximately).

2.14 is lesser value, therefore 2.14 is better deal than 2.24.

And finally we could say 32.05/15 is better deal  than 56/25.

You might be interested in
Simplify <br>(sinA +cosA) (sinA-cosA) ​
kvv77 [185]

Answer:

-cos(2A)

Step-by-step explanation:

We know that (a+b) (a-b) = a^2-b^2

So it means we can simplify to sin^2(A)-cos^2(A) and we know cos^2(A) - sin^2(A) = cos(2A) but we will just multiply by -1 and we get - cos(2A)

5 0
3 years ago
How to use multiplication to find 4 divided by 1/8
nadezda [96]

Answer:

32, because when you are dividing by a fraction, you can multiply by the divident by reciprocal of the divisor.

Step-by-step explanation:

4 ÷ 1/8

4/1 ÷ 1/8

4/1 × 8/1

4 × 8

32

When you are dividing by a fraction, you can multiply by the divident by reciprocal of the divisor.

8 0
3 years ago
Read 2 more answers
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
What is the probability of rolling a 7?
marta [7]
The answer is 0% chance
8 0
3 years ago
Read 2 more answers
10 less than a number is the same number doubled. What is the number?
slega [8]

Answer:

-10

Step-by-step explanation:

Let x = number

10 less than a number is the same number doubled

x-10 = 2x

Subtract x from each side

x-10-x = 2x-x

-10 = x

The number is -10

5 0
3 years ago
Other questions:
  • What is the mode of this data?<br> 1.7 8.9 3 5.9 3.2 4.1 6.6 0.7
    13·1 answer
  • What’s the equation of the circle with center (9, –1) and radius r = 7?
    10·1 answer
  • What is the solution to the linear equation d - 10 - 2d + 7 = 8 +d - 10 - 3d
    9·1 answer
  • Sequences:
    12·1 answer
  • The dimensions of a rectangular parcel of land are shown in the box.
    15·1 answer
  • Joey is buying a new couch for his living room. The couch costs $379.00. He has a choice of using a coupon for 5% off before tax
    7·2 answers
  • Which of the following is the same formula as A = 6s2 ?
    12·1 answer
  • 16
    13·1 answer
  • You are applying for graduate school at University A. In the past 42% of the applicants to this university have been accepted. I
    9·1 answer
  • Evaluate 5x when x = -5.<br> *help plsss*
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!