1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kay [80]
3 years ago
15

Solve for x in the equation 2x^2+3x-7=x^2+5x+39

Mathematics
2 answers:
Shalnov [3]3 years ago
8 0
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
daser333 [38]3 years ago
8 0

answer:

D

hope this helps :o)

You might be interested in
WILL GIVE BRAINLIEST GUESS IF YOU HAVE 2 A parallelogram has an area of 224 square centimeters and a base length of 16 centimete
ivann1987 [24]

Answer:

Area = base * height

224 = 16 * height

height = 14

The height is 14 centimeters.

Your answer is c.

3 0
3 years ago
Find the area of the following shape, you must show all work to recieve credit,
svp [43]
What is the shape for your problem?


7 0
3 years ago
I really need help plz help me
Phantasy [73]

Answer:

64

Step-by-step explanation:

This is actually really easy you just have to subtract 36 from 100

Hope this helps also please mark brainliest

6 0
3 years ago
Given: AB tangent to circle O at B, and secant through point A intersect the circle at points C and D. Find CD, if
azamat

Answer:

6 cm

Step-by-step explanation:

If you use Tangent-secant product (chapter reference), AB/AC = AD/AB so 4/2 = AD/4. AD = 8, CD = AD - AC = 8 - 2 = 6 cm.

3 0
3 years ago
Read 2 more answers
Simplify (x2 16)(x2-16)? <br><br> A. x4- 256<br><br> B. x256 <br><br> C. x432 <br><br> D. x4-32
tiny-mole [99]
(x² + 16)(x² - 16)
= (x²)² - 16²
= x⁴ - 256
7 0
3 years ago
Other questions:
  • Q is directly proportional to r.<br> Q is 76 when r is 20.<br> Work out q when r is 45
    8·1 answer
  • A radio station dedicates 20% of their air time to commercials for each radio show. During a radio show, 30 minutes of commercia
    10·1 answer
  • Select all that apply.
    13·1 answer
  • 12 is what percent of 18
    7·2 answers
  • Help for a few extra points!!
    5·1 answer
  • What is 2 3/4as an improper fraction
    8·2 answers
  • What would be the answer for this.
    5·1 answer
  • What is the radius of a circle with an area of 78.5 cubic inches? Use 3.14 for pi. Enter your answer in the box.
    12·2 answers
  • The point (-7,4) in on the terminal side of an angle t. Find sec (t) to two decimal places.
    14·1 answer
  • Which expression correctly simplifies ... (see photo)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!