Answer:
The answer is below
Step-by-step explanation:
Show that f(x) f(y) = f(x+y)
From trigonometric:
sin(x + y) = sinxcosy + cosxsiny
sin(x - y) = sinxcosy - cosxsiny
cos(x + y) = cosxcosy - sinxsiny
cos(x - y) = cosxcosy + sinxsiny
![f(x)=\left[\begin{array}{ccc}cosx&-sinx&0\\sinx&cosx&0\\0&0&1\end{array}\right] ,f(y)=\left[\begin{array}{ccc}cosy&-siny&0\\siny&cosy&0\\0&0&1\end{array}\right] \\\\\\f(x)f(y)=\left[\begin{array}{ccc}cosxcosy-sinxsiny&-cosxsiny-sinxcosy&0\\sinxcosy+cosxsiny&-sinxsiny+cosxcosy&0\\0&0&1\end{array}\right] \\\\\\f(x)f(y)=\left[\begin{array}{ccc}cos(x+y)&-sin(x+y)&0\\sin(x+y)&cos(x+y)&0\\0&0&1\end{array}\right] \\\\\\](https://tex.z-dn.net/?f=f%28x%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcosx%26-sinx%260%5C%5Csinx%26cosx%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%2Cf%28y%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcosy%26-siny%260%5C%5Csiny%26cosy%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cf%28x%29f%28y%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcosxcosy-sinxsiny%26-cosxsiny-sinxcosy%260%5C%5Csinxcosy%2Bcosxsiny%26-sinxsiny%2Bcosxcosy%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cf%28x%29f%28y%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%28x%2By%29%26-sin%28x%2By%29%260%5C%5Csin%28x%2By%29%26cos%28x%2By%29%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C)
![f(x+y)=\left[\begin{array}{ccc}cos(x+y)&-sin(x+y)&0\\sin(x+y)&cos(x+y)&0\\0&0&1\end{array}\right] \\\\\\Therefore\ f(x)f(y)=f(x+y)](https://tex.z-dn.net/?f=f%28x%2By%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%28x%2By%29%26-sin%28x%2By%29%260%5C%5Csin%28x%2By%29%26cos%28x%2By%29%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5CTherefore%5C%20f%28x%29f%28y%29%3Df%28x%2By%29)
N=3
Distribute them at the numbers, add 30 to both sides of the equation then simplify. Then add 14 to both sides of the equation. Simplify again. Divide both sides of the equation by the same factor. Simplify. Answer is n=3
Answer:
288
Step-by-step explanation:
0.40hrs × 720 calories = 288 calories burned