Answer:
-3
Step-by-step explanation:
Simplifying
4(4m + -3) + -1(m + -5) = -52
Reorder the terms:
4(-3 + 4m) + -1(m + -5) = -52
(-3 * 4 + 4m * 4) + -1(m + -5) = -52
(-12 + 16m) + -1(m + -5) = -52
Reorder the terms:
-12 + 16m + -1(-5 + m) = -52
-12 + 16m + (-5 * -1 + m * -1) = -52
-12 + 16m + (5 + -1m) = -52
Reorder the terms:
-12 + 5 + 16m + -1m = -52
Combine like terms: -12 + 5 = -7
-7 + 16m + -1m = -52
Combine like terms: 16m + -1m = 15m
-7 + 15m = -52
Solving
-7 + 15m = -52
Solving for variable 'm'.
Move all terms containing m to the left, all other terms to the right.
Add '7' to each side of the equation.
-7 + 7 + 15m = -52 + 7
Combine like terms: -7 + 7 = 0
0 + 15m = -52 + 7
15m = -52 + 7
Combine like terms: -52 + 7 = -45
15m = -45
Divide each side by '15'.
m = -3
Simplifying
m = -3
Hope this helped :)
I don’t know if I’m 100% correct but I got
Exact form x= 103/5
Decimal form x=20.6
406 and 411 because there is at least 400 sheets because of the 4 boxes of 100 so there would have to be more than 400 because of the loose sheets
At the end of the zeroth year, the population is 200.
At the end of the first year, the population is 200(0.96)¹
At the end of the second year, the population is 200(0.96)²
We can generalise this to become at the end of the nth year as 200(0.96)ⁿ
Now, we need to know when the population will be less than 170.
So, 170 ≤ 200(0.96)ⁿ
170/200 ≤ 0.96ⁿ
17/20 ≤ 0.96ⁿ
Let 17/20 = 0.96ⁿ, first.
log_0.96(17/2) = n
n = ln(17/20)/ln(0.96)
n will be the 4th year, as after the third year, the population reaches ≈176