Answer: β ≠ ±1
Step-by-step explanation: For a system of equations to have an unique solution, its determinant must be different from 0: det |A| ≠ 0. So,
det
≠ 0
Determinant of a 3x3 matrix is calculated by:
det ![\left[\begin{array}{ccc}1&\beta&1-\beta\\2&2&0\\2-2\beta&4&0\end{array}\right]\left[\begin{array}{ccc}1&\beta\\2&2\\2-2\beta&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26%5Cbeta%261-%5Cbeta%5C%5C2%262%260%5C%5C2-2%5Cbeta%264%260%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26%5Cbeta%5C%5C2%262%5C%5C2-2%5Cbeta%264%5Cend%7Barray%7D%5Cright%5D)
![8(1-\beta)-[2(2-2\beta)(1-\beta)]](https://tex.z-dn.net/?f=8%281-%5Cbeta%29-%5B2%282-2%5Cbeta%29%281-%5Cbeta%29%5D)




β ≠ ±1
For the system to have only one solution, β ≠ 1 or β ≠ -1.
Jerseys in mens department is 82
Jerseys in kids department is 24 times 82
24×82=1968
Answer: 150
Step-by-step explanation:30 an hour
Answer:
In mathematics, factorization (also factorisation in some forms of British English) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.Prime factorization of 891 = 1×3×3×3×3×11= 1×34×11
Step-by-step explanation:
1. We write number 891 above a 2-column table
2. We divide 891 by the smallest possible prime factor
3. We write down on the left side of the table the prime factor and next number to factorize on the ride side
4. We continue to factor in this fashion (we deal with odd numbers by trying small prime factors)
5. We continue until we reach 1
Answer:
, 9
Step-by-step explanation:
=
÷
= 
=
= 9