Answer: bruh nobody needs to know this I won’t use this irl
Step-by-step explanation:
Answer:
See explanation
Step-by-step explanation:
Given 
According to the order of the vertices,
- side AB in triangle ABC (the first and the second vertices) is congruent to side AD in triangle ADC (the first and the second vertices);
- side BC in triangle ABC (the second and the third vertices) is congruent to side DC in triangle ADC (the second and the third vertices);
- side AC in triangle ABC (the first and the third vertices) is congruent to side AC in triangle ADC (the first and the third vertices);
- angle BAC in triangle ABC is congruent to angle DAC in triangle ADC (the first vertex in each triangle is in the middle when naming the angles);
- angle ABC in triangle ABC is congruent to angle ADC in triangle ADC (the second vertex in each triangle is in the middle when naming the angles);
- angle BCA in triangle ABC is congruent to angle DCA in triangle ADC (the third vertex in each triangle is in the middle when naming the angles);
So for this question, we're asked to find the quadrant in which the angle of data lies and were given to conditions were given. Sign of data is less than zero, and we're given that tangent of data is also less than zero. Now I have an acronym to remember which Trig functions air positive in each quadrant. . And in the first quadrant we have that all the trig functions are positive. In the second quadrant, we have that sign and co seeking are positive. And the third quadrant we have tangent and co tangent are positive. And in the final quadrant, Fourth Quadrant we have co sign and seeking are positive. So our first condition says the sign of data is less than zero. Of course, that means it's negative, so it cannot be quadrant one or quadrant two. It can't be those because here in Quadrant one, we have that all the trick functions air positive and the second quadrant we have that sign. If data is a positive, so we're between Squadron three and quadrant four now. The second condition says the tangent of data is also less than zero now in Quadrant three. We have that tangent of data is positive, so it cannot be quadrant three, so our r final answer is quadrant four, where co sign and seek in are positive.
The Fernandez family would have driven 208 miles in a rate of 4 hours.