1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
4 years ago
15

Use the Gram-Schmidt process to find an orthonormal basis for the subspace of R4 spanned by the vectors (1, 0, 1, 1), (1, 0, 1,

0), (0, 0, 1, 1).
Mathematics
1 answer:
Sunny_sXe [5.5K]4 years ago
8 0

Answer:

$ e_1 = \begin{pmatrix}\frac{\sqrt{\textbf{3}}}{\textbf{2}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{3}}}{\textbf{3}}\\\\\frac{\sqrt{\textbf{3}}}{\textbf{3}}\end{pmatrix}         $ e_2 = \begin{pmatrix}\frac{\sqrt{\textbf{6}}}{\textbf{6}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{6}}}{\textbf{6}}\\\\\frac{\sqrt{\textbf{-6}}}{\textbf{3}}\end{pmatrix}        $ e_3 = \begin{pmatrix}\frac{\sqrt{\textbf{-2}}}{\textbf{2}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{2}}}{\textbf{2}}\\\\0\end{pmatrix}

Step-by-step explanation:

we have to orthonormalize the vectors:

v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}    v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}      $ v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}

According to Gram - Schmidt process, we have:

u_k = v_k - \sum_{j = 1} ^ {k - 1} proj_{uj} (v_k) where, $ proj_u (v) = \frac{u . v}{u . u}u

The normalized vector is: $ e_k = \frac{u_k}{\sqrt{u_k.u_k}} $

Now, the first step.

v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = u₁

Therefore, e₁ = $ \frac{u_1}{\sqrt{u_1.u_1}} $

$  = \begin{pmatrix}\frac{\sqrt{\textbf{3}}}{\textbf{2}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{3}}}{\textbf{3}}\\\\\frac{\sqrt{\textbf{3}}}{\textbf{3}}\end{pmatrix}

Now, we find e₂.

$ u_2 = v_2 - \frac{u_1.v_2}{u_1.u_1}u_1 $

$ = \begin{pmatrix} \frac{1}{3}\\ \\ 0 \\\\ \frac{1}{3}\\\\ \frac{-2}{3}  \end{pmatrix}

Therefore, $ e_2 = \frac{u_2}{\sqrt{u_2.u_2}} $

$ e_2 = \begin{pmatrix}\frac{\sqrt{\textbf{6}}}{\textbf{6}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{6}}}{\textbf{6}}\\\\\frac{\sqrt{\textbf{-6}}}{\textbf{3}}\end{pmatrix}

To find e₃:

$ u_3 = v_3 - \frac{u_1. v_3}{u_1.u_1}u_1 - \frac{u_2. v_3}{u_2.u_2} u_2 $

$ = \begin{pmatrix} \frac{-1}{2} \\\\ 0\\ \\ \frac{1}{2} \\\\ 0 \\\end{pmatrix}

$ e_3 = \frac{u_3}{\sqrt{u_3.u_3}} $

$ e_3 = \begin{pmatrix}\frac{\sqrt{\textbf{-2}}}{\textbf{2}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{2}}}{\textbf{2}}\\\\0\end{pmatrix}

So, we have the orthonormalized vectors $ e_1, e_2, e_3 $.

Hence, the answer.

You might be interested in
What two numbers multiply to 72 and add to 14?
Ymorist [56]

Answer:

4 and -18

Step-by-step explanation:

6 0
3 years ago
Henrietta has a sample of a pure substance in a beaker. She heats the substance to a temperature of 100°C. What will determine i
erica [24]
The answer is c
have a good day
3 0
3 years ago
Read 2 more answers
A team won 6 hockey matches and lost 9 matches. what per cent of the matches did the team win​
Mama L [17]

Answer:

66.67%

Step-by-step explanation:

total matches = 9

matches won = 6

percentage = matches won*100/ total matches

percentage = 600/9

= 66.67%

7 0
3 years ago
Read 2 more answers
Question 2
REY [17]

Answer:

C

Step-by-step explanation:

8 0
2 years ago
Please help and work please
navik [9.2K]
84-60=24
210-24=186
h=186
3 0
3 years ago
Other questions:
  • Enter the value of n for the equation
    11·2 answers
  • Solve for y <br> x + 5y = 5
    5·2 answers
  • Studying mathematics in the night is better than the morning study and why?
    10·1 answer
  • Can the values be added or subtracted? If one value needs to be converted to another, describe the conversion.
    10·1 answer
  • Complete the square to transform the quadratic equation into the form (x – p)2 = q.
    7·1 answer
  • Carson bought a coat for 40% off the original price, then another 15% off the discounted price. If the coat was originally $149
    9·1 answer
  • Which value, when placed in the box, would result in a system of equations with infinitely many solutions? y = -2x + 4 6x + 3y =
    6·2 answers
  • A line segment can be drawn from each vertex of a polygon to every other vertex, forming the sides and
    9·1 answer
  • What is the answer to: y= 2x^2+6 axis of symmetry and vertex?
    11·1 answer
  • I need the angle measurements for each letter in this image
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!