The common factor of 8 and 16 are 1, 2, 4, and 8.
Answer:60
Step-by-step explanation:
0
Answer: D
<u>Step-by-step explanation:</u>
The first matrix contains the coefficients of the x- and y- values for both equations (top row is the top equation and the bottom row is the bottom equation. The second matrix contains what each equation is equal to.
![\begin{array}{c}2x-y\\x-6y\end{array}\qquad \rightarrow \qquad \left[\begin{array}{cc}2&-1\\1&-6\end{array}\right] \\\\\\\begin{array}{c}-6\\13\end{array}\qquad \rightarrow \qquad \left[\begin{array}{c}-6\\13\end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bc%7D2x-y%5C%5Cx-6y%5Cend%7Barray%7D%5Cqquad%20%5Crightarrow%20%5Cqquad%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C1%26-6%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5Cbegin%7Barray%7D%7Bc%7D-6%5C%5C13%5Cend%7Barray%7D%5Cqquad%20%5Crightarrow%20%5Cqquad%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-6%5C%5C13%5Cend%7Barray%7D%5Cright%5D)
The product will result in the solution for the x- and y-values of the system.
Answer:
Domain = (
-∞,∞), {x|x ∈ R}
Range (-∞,2], {y|y ≤ 2}
Vertex (h,k) = (6,2)
Step-by-step explanation:
(Domain / Range) The absolute value expression has a V shape. The range of a negative absolute value expression starts at its vertex and extends to negative infinity.
(Vertex) To find the x coordinate of the vertex, set the inside of the absolute value
x − 6 equal to 0 . In this case, x − 6 = 0 .
x−6=0
Add 6 to both sides of the equation.
x=6
Replace the variable x with 6 in the expression.
y=−1/3⋅|(6)−6|+2
Simplify−1/3⋅|(6)−6|+2.
y=2
The absolute value vertex is ( 6 , 2 ) .
(6,2)
Hope this helps
Answer:
Wow :o
Step-by-step explanation: