Answer:
the answer is C
Step-by-step explanation:i hope you enjoyed the answer
The nature of roots is 2348
Answer:
7) 
8) 
Step-by-step explanation:
You must use the laws of exponents.
7)

When you raise a fraction to an exponent, raise the numerator and the denominator to that exponent.

When you raise a product to an exponent, raise each factor to that exponent.
When you raise an exponent to an exponent, multiply the exponents.


8)

To divide powers with the same base, subtract the exponents. Remember that a plain variable, such as w is the same as w^1.


Your answer will be -6d-3f+5
let's firstly convert the mixed fractions to improper fractions and then to do away with the denominators, let's multiply both sides by the LCD of all denominators.
![\stackrel{mixed}{1\frac{3}{4}}\implies \cfrac{1\cdot 4+3}{4}\implies \stackrel{improper}{\cfrac{7}{4}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{7}{4}-\cfrac{4}{5}=\cfrac{35}{20}-\boxed{?}\implies \stackrel{\textit{multipling both sides by }\stackrel{LCD}{20}}{20\left( \cfrac{7}{4}-\cfrac{4}{5} \right)=20\left( \cfrac{35}{20}-\boxed{?} \right)} \\\\\\ 35-16=35-20\boxed{?}\implies 19=35-20\boxed{?}\implies -16=-20\boxed{?} \\\\\\ \cfrac{-16}{-20}=\boxed{?}\implies \cfrac{4}{5}=\boxed{?}](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B3%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B3%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B7%7D%7B4%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B7%7D%7B4%7D-%5Ccfrac%7B4%7D%7B5%7D%3D%5Ccfrac%7B35%7D%7B20%7D-%5Cboxed%7B%3F%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultipling%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B20%7D%7D%7B20%5Cleft%28%20%5Ccfrac%7B7%7D%7B4%7D-%5Ccfrac%7B4%7D%7B5%7D%20%5Cright%29%3D20%5Cleft%28%20%5Ccfrac%7B35%7D%7B20%7D-%5Cboxed%7B%3F%7D%20%5Cright%29%7D%20%5C%5C%5C%5C%5C%5C%2035-16%3D35-20%5Cboxed%7B%3F%7D%5Cimplies%2019%3D35-20%5Cboxed%7B%3F%7D%5Cimplies%20-16%3D-20%5Cboxed%7B%3F%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B-16%7D%7B-20%7D%3D%5Cboxed%7B%3F%7D%5Cimplies%20%5Ccfrac%7B4%7D%7B5%7D%3D%5Cboxed%7B%3F%7D)