The correct format of the question is
At the end of 2006, the population of Riverside was 400 people. The population for this small town can be modeled by the equation below, where t represents the number of years since the end of 2006 and P represents the number of people.
Based on this model, approximately what was the increase in the population of Riverside at the end of 2009 compared to the end of 2006?
(A) 291
(B) 691
(C) 1040
(D) 1440
Answer:
The increase in the population at the end of 2009 is 291 people
Step-by-step explanation:
We are given the equation as
where
P = No of People
t= No of Years
it is given that in the year 2006 the population is 400
this will only happen when we take t= 0
so for
Year value of t
2006- t = 0
2007- t = 1
2008- t = 2
2009 t = 3
No of people in 2009 will be

= 400*1.728
P = 691.2
Since the equation represents no of people so it can't be in decimals, Therefore the population will be 691
Increase = P(2009) - P(2006)
= 691 - 400
= 291
The increase in the population at the end of 2009 is 291 people.
Answer:
The answer is 19.10 $
Step-by-step explanation:
Answer:

Step-by-step explanation:
So, you basically want the equation of the circle.
Given:
Center(C): 

The equation of circle is:

Where,
represents the center point and
is the radius of the circle.
Plotting the values in the equation:


This is the equation of the circle of center (5, 2) and radius 3.
<span>A) m > 0 and b > 0
that's what i think it is. If its not im sorry.</span>
Answer:

33 gallons of water to begin with.
Step-by-step explanation:
So we essentially are given two coordinates: (6,87) and (21,222). To find an equation, we simply need to find the slope and y-intercept. We know it's a linear equation because it's a steady stream, meaning a constant slope.
The slope is:

So, the rate at which the stream flows is 9 gallons per minute.
Now, let's find the initial amount of water. To do this, we can use point-slope form. Pick either of the two points. I'm going to use (6,87).

So, there were 33 gallons of water in the tank to begin with.